2D systems at oxide interfaces

Jean-Marc Triscone University of Geneva

Joerg Harms, MPI Hamburg

5 – 8

What are we doing?

Assemble artificial / synthetic materials Search for novel properties and/or functionalities

A. Torres, O. Stephan, Orsay

Not an easy task

Amazing progress in -advanced growth techniques -advanced characterisation -sophisticated calculations

 $-t_{ii}^{aa\prime}$

Designing and controlling the properties of transition metal oxide quantum materials C.H. Ahn, A. Cavalleri, A. Georges, S. Ismail-Beigi, A. Millis, J.-M. Triscone Nature Materials **20**, 1462 (2021)

Using transition metal perovskites as building blocks

Perovskite - CaTiO₃

Perovskite structure - a very common structure on Earth

TMO perovskites display a variety of properties

P. Zubko et al., Ann. Rev. Cond. Matter Phys. 2, 141 (2011)

TM-oxides - Lego bricks

PbTiO₃ ferroelectric $T < T_C$ Tetragonal and ferroelectric (a=b=3.904Å, c=4.152Å)

SrTiO₃ paraelectric at all temperatures $(a=b=c=3.905\text{\AA})$

Epitaxial oxide heterostructures

Epitaxial oxide heterostructures

DE GENÈVE

Two examples

1. The LaAlO₃/SrTiO₃ interface - a 2D electron system

2. Vanadate based heterostructures - possibly a new path to realise 2D structures

The LaAlO₃/SrTiO₃ system

LaAlO₃:

band insulator

∆=5.6eV

SrTiO₃:

band insulator Δ =3.2 eV

quantum paraelectric

A conducting interface

A high-mobility electron gas at the LaAlO₃/SrTiO₃ heterointerface

Y. Xie et al., Adv. Mater. 25, 4735 (2013). M. Salluzzo et al., Adv. Mater. 25, 2333 (2013). A. Annadi et al., Nature Comm. 4, 1838 (2013). A. Annadi et al., PRB 87, 201102 (2013). S. Baneriee et al., Nature Physics 9, 626 (2013). G. Berner et al., PRL 110, 247601 (2013). E. Breckenfeld et al., PRL 110, 196804 (2013). C. Cancellieri et al., PRL 110, 137601 (2013). S. Caprara et al., PRB 88, 020504 (2013). G. Chen, L. Balents, PRL 110, 206401 (2013). G. Cheng et al., PRX 3, 011021 (2013). F. Cossu et al., PRB 88, 045119 (2013). G. Drera et al., PRB 87, 075435 (2013). M. Gabay, J.-M. Triscone, Nature Physics 9, 610 (2013). L.X. Hayden et al., PRB 88, 075405 (2013). M. Honig et al., Nature Mater. 12, 1112 (2013). M. Hosoda et al., APL 102, 091601 (2013). Z. Huang et al., PRB 88, 161107 (2013). B. Kalisky et al., Nature Mater. 12, 1091 (2013). G. Khalsa et al., PRB 88, 041302 (2013). Y. Kim et al., PRB 87, 245121 (2013). J.-S. Lee et al., Nature Mater. 12, 703 (2013). S.Y. Park, A.J. Millis, PRB 87, 205145 (2013). J. Park et al., PRL 110, 017401 (2013). C. Richter et al., Nature 502, 528 (2013). M. Rössle et al., PRL 110, 136805 (2013). A. Rubano et al., PRB 88, 035405 (2013). M. Salluzzo et al., PRL 111, 087204 (2013). Y. Yamada et al., PRL 111, 047403 (2013). H.K. Sato et al., APL 102, 251602 (2013). F. Trier et al., APL 103, 031607 (2013). V.T. Tra et al., Adv. Mater. 25, 3357 (2013). D. Li et al., APL Mater. 2, 012102 (2014).

R. Yamamoto et al. PRL 107, 036104 (2011) P. Delugas et al. PRL 106, 166807 (2011) S. A. Pauli et al. PRL 106, 036101 (2011) L. Li et al., Nature Physics (2011) J.A. Bert et al., Nature Physics (2011) D.A. Dikin et al., PRL 107, 56802 (2011) L. Li et al. Science (2011) Ariando et al. Nature Comm. (2011) H. J Gardner et al. Nature Physics (2011) M. Stengel PRL 106, 136803 (2011) H. W. Jang et al. Science (2011) J. W. Park et al. Nature Comm (2011) A. Annadi et al., PRB 86, 085450 (2012). K. Aoyama, M. Sigrist, PRL 109, 237007 (2012) N. Banerjee et al., APL 100, 041601 (2012). M. L. Reinle-Schmitt et al., Nature Comm. 3, 932 (2012) C.W. Bark et al., Nano Letters 12, 1765 (2012). J. Bert et al., PRB 86, 060503 (2012). S. Caprara et al., PRL 109, 196401 (2012). W.S. Choi et al., Adv. Mater. 24, 6423 (2012). W.S. Choi et al., Nano Letters 12, 4590 (2012). A. Fête et al., PRB 86, 201105 (2012). F. Gunkel et al., APL 100, 052103 (2012). T. Hernandez et al., PRB 85, 161407 (2012). B.-C. Huang et al., PRL 109, 246807 (2012). Z. Salman et al., PRL 109, 257207 (2012). D.A. Dikin et al., PRB 107, 056802 (2012). N. Reyren et al., PRL 108, 186802 (2012). K. Au et al., Adv. Mater. 24, 2598 (2012). S.-I. Kim et al., Adv. Mater. 25, 4612 (2013). H. Liang et al., Sci. Rep. 3, 1975 (2013). M. Huijben et al., Adv. Func. Mater. 23, 5240 (2013) H.-L. Lu et al., Sci. Rep. 3, 2870 (2013).

A. Ohtomo, H. Hwang, Nature 427, 423 (2004) S. Okamoto, A.J. Millis, Nature 428, 630 (2004) S. Thiel et al., Science 313, 1942 (2006) N. Nakagawa et al., Nature Materials 5, 204 (2006) M. Hujiben et al., Nature Materials 5, 556 (2006) C.W. Schneider, APL 89, 122101 (2006) A. Brinkman et al., Nature Materials 6, 493 (2007) G. Herranz et al., PRL 98, 216803 (2007) W. Siemons et al., PRL 98, 196802 (2007) P.R. Willmott et al., PRL 99, 155502 (2007) A. Kalabukov et al., PRB 75, 121404(R) (2007) Z. Popovic et al., PRL 101, 256801 (2008) M. Basletic et al., Nature Materials 7, 621 (2008) C. Cen et al., Nature Materials 7, 298 (2008) S. Thiel et al., PRL 102, 046809 (2009) R. Pentchevaet al., PRL 102, 107602 (2009) M. Salluzzo et al., PRL 102, 166804 (2009) O. Copie et al., PRL 102, 216804 (2009) M. Sing et al., PRL 102, 176805 (2009) C. Bell et al., APL 94, 222111 (2009) C. Bell et al., PRL 103, 226802 (2009) C. Cen et al., Science 323, 1026 (2009) C.L. Jia et al., PRB 79, 081405(R) (2009) W. Son et al., PRB 79, 245411 (2009) G. Singh-Bhalla et al., Nature Physics (2010) A. D. Caviglia et al. PRL 105, 236802 (2010) M. Ben Shalom et al. PRL 105, 206401 (2010) A. D. Caviglia et al. PRL 104, 126803 (2010) A. Dubroka et al. PRL 104, 156807 (2010) M. Ben Shalom et al. PRL 104, 126802 (2010) M. Breitschaft et al., PRB 81, 153414 (2010) M. R. Fitzsimmons et al. PRL 107, 217201 (2011) C. Cancellieri et al. PRL 107, 056102 (2011)

Vast literature: a review Stefano Gariglio et al. APL Mat. 4, 060701 (2016)

Why is this interface conducting? - Polar discontinuity

$$EXP: t_{bd} = \frac{3.35}{0.24} = 13.96 \text{\AA} = 3.63$$
 cells

EXP

В

The system is superconducting

A rather unique system: Field effect control

Side gating

Tunable SC and phase diagram

A.D. Caviglia et al, Nature 456, 625 (2008)

2D superconductivity

N. Reyren et al. APL **94**, 112506 (2009) M. Ben Shalom et al. PRL **104**, 126802 (2010)

2D signatures in the normal state

A. Fête PhD thesis 2014

A. Fête et al. New J. Phys. 16 112002 (2014)

Electronic structure

With spin-orbit

A. Joshua et al. Nature Com. 3, 1129 (2012)

Superconductivity and spin-orbit

A.D. Caviglia et al., Phys. Rev. Lett. 104, 126803 (2010)

Superconductivity and spin-orbit

 T_c goes as exp(-1/(N(E_F)V))

A. Joshua et al. Nature Com. 3, 1129 (2012)

Signatures of spin-orbit in the SC state

The inverse Edelstei

Spin pumping

Allows a spin current to charge current conversion

A pure spin current is injected through the LaAlO₃ charge current in the 2DES Nat. N

Nat. Mater. 15, 1261 (2016)

Predicted angular dependence

Prediction: Z. Zhong et al. PRB87: And White 2019 to charge conversion and comparison to the band structure. Left column (a): polar plots of angular spin to charge conversion measurements using spin Seebeck injection for 6 back gate every set Charge Conversion measurements using spin to every single and the individual polar plots of the amplitudes. These are all charge currents are represented on circles around the individual polar plots of the amplitudes. These are all tangential indicating that the spin to charge conversion is everywhere dominated by the linear Rashba Edelstein effect. The corresponding band structures where the chemical potential lies are represented on the 3D 6-band calculations.

Spin and orbital Rashba effect

Along with the spin Rashba effect, one can have an orbital contribution

The orbital Rashba effect is linear and is not predicted to change sign - it may play an important role at the LaAlO₃/ SrTiO₃ interface

A . Johansson et al. PRR 3, 013275 (2021)

A different « mix » of orbital and spin injection - possibly linked to the barrier - could explain the difference between the results of Lesne et al. and ours

Open / interesting questions

Spin-orbit and superconductivity

Physics in the under doped superconducting regime

Spin and orbital Rashba effect

Recent studies in [111] direction

Recent studies at the interface with KTaO₃

(111) LaAlO₃/SrTiO₃

The cover shows the curvature of the space fabric due to the superposition of spin and orbital states at the interface between lanthanum aluminate (LaAlO₃) and strontium titanate (SrTiO₃). © Xavier Ravinet – UNIGE

Article

https://doi.org/10.1038/s41563-023-01498-0

Designing spin and orbital sources of Berry curvature at oxide interfaces

Received: 2 October 2022	Edouard Lesne © ^{1,6} ⊠, Yildiz G. Sağlam ¹ , Raffaele Battilomo ² ,
Accepted: 31 January 2023	Maria Teresa Mercaldo @°, Thierry C. van Thiel', Ulderico Filippozzi @', Canio Noce @³, Mario Cuoco @⁴, Gary A. Steele @¹, Carmine Ortix @²³⊠&
Published online: 16 March 2023	Andrea D. Caviglia ወ⁵⊠

0

(111) KTaO₃ interface

SUPERCONDUCTIVITY

Two-dimensional superconductivity and anisotropic transport at KTaO₃ (111) interfaces

Changjiang Liu¹*⁺, Xi Yan^{1,2,3}⁺, Dafei Jin⁴, Yang Ma⁵, Haw-Wen Hsiao⁶, Yulin Lin⁴, Terence M. Bretz-Sullivan¹, Xianjing Zhou⁴, John Pearson¹, Brandon Fisher⁴, J. Samuel Jiang¹, Wei Han⁵, Jian-Min Zuo⁶, Jianguo Wen⁴, Dillon D. Fong¹, Jirong Sun^{3,7}, Hua Zhou², Anand Bhattacharya¹*

The distinctive electronic structure found at interfaces between materials can allow unconventional quantum states to emerge. Here we report on the discovery of superconductivity in electron gases formed at interfaces between (111)-oriented KTaO₃ and insulating overlayers of either EuO or LaAlO₃. The superconducting transition temperature, as high as 2.2 kelvin, is about one order of magnitude higher than that of the LaAlO₃/SrTiO₃ system. Notably, similar electron gases at KTaO₃ (001) interfaces remain normal down to 25 millikelvin. The critical field and current-voltage measurements indicate that the superconductivity is two-dimensional. In EuO/KTaO₃ (111) samples, a spontaneous in-plane transport anisotropy is observed before the onset of superconductivity, suggesting the emergence of a distinct "stripe"-like phase, which is also revealed near the critical field.

Orthorhombic vanadates Structural coupling leads to a transition layer

Perovskite vanadates REVO₃

RVO₃

R=La

1.35

V⁴⁺ (d¹) : metallic (e.g. SrVO₃)

200

 T_{so} , T_{oo} (K)

0

1.15

V³⁺ (d²) : Mott-insulators (rare earth or Y, e.g. LaVO₃)

Sm

 T_{001}

Nd Pr

C-type SO G-type OO

1.3

 $\frac{1.25}{r_R(A)}$

S. Miyasaka et al. PRB **68**, 100406 (2003) **DE GENÈVE**

Er Y DyTb Gd

 $T_{SO2} = T_{OO2}$

G-type SO C-type OO

G-type OO

1.2

C-type SO

G-type OO

Pseudo-cubic unit-cell - a_{pc}

Perovskite vanadates RVO₃

Orthorhombic structure as many perovskites Pnma with a tilt pattern a-b+c-

Orthorhombic structure a-b+c-

[010]

ao

Co

 $a_{pc} \approx b_o/2 \approx (a_o^2 + c_o^2)^{1/2}$

[100]

LaVO₃ $a_o=5.555$ Å $b_o=7.849$ Å - in phase rotations $c_o=5.553$ Å

 b_{o} is the orthorhombic « long-axis »

Perovskite vanadates RVO₃

These instabilities couple to an anti-polar mode (AM) X₅-

 $F{\sim}\varphi_{xy}{}^{-}\varphi_{z}{}^{+}X_{5}{}^{-}$

AM - cation displacements in the [110] pseudocubic direction

J. Rondinelli and C. Fennie Adv. Func. Mat. 23, 4810 (2013)

Synthetic ferroelectric 1u.c./1u.c. (odd) ABO₃/A'BO₃ superlattices

The long orthorhombic axis - in-phase rotations has to be out of plane

AM seen using STEM

« Atomic displacement mapping » allows the anti-polar modes to be visualised and the long axis direction to be determined

H. Meley et al. APL Mat. 6, 046102 (2018)

LaVO₃ grown on a (101)_o DyScO₃ substrate

bo 2011 $\left[\overline{1}10\right]$ UNIVERSITÉ DE GENÈVE

Strain favours a long axis in the out-of-plane direction

An unusual contrast at the interface -no defect -no chemical contrast

(101)_o DyScO₃ Orthorhombic b-axis (long axis) in-plane

A 10 unit-cell thick transition layer with in-plane b-axis

The transition layer comes from the competition between macroscopic strain and the oxygen octahedral rotations coupling energy

A new path to create a sharp interface between two regions of the same material under distinct mechanical boundary conditions - one of them being possibly 2D

Open questions

This TL a « universal » phenomenon ?

Parameters controlling the TL?

Can this be useful / become functional?

Marcus Schmitt and Philippe Ghosez (Liège)

VI ULINLVL

Conclusions

Structural and electronic couplings deeply affect the properties in oxide structures

-The LaAlO₃/SrTiO₃ system illustrates how an interfacial coupling can lead to a 2D electron system which displays...

-In LaVO₃ films on DyScO₃ substrates, structural coupling leads to a 10 u.c. thick transition layer

...a way to create a sharp interface between two regions of the same material under distinct mechanical boundary conditions

Joerg Harms, MPI Hamburg

The « Geneva » LaAlO₃/SrTiO₃ team

Claudia Cancellieri (EMPA)

Wei Liu A

Alexandre Fête (Rolex)

Zhenping Wu (Beijing)

Denver Li Ritsuko Eguchi (Hong-Kong) (Okayama)

Gernot Scheerer (CERN)

Margherita Boselli (CERN)

The « Geneva-EPFL » vanadate team

Clémentine Thibault

Stefano Gariglio

Duncan Alexander EPFL

Hugo Meley

and many collaborations

A. El hamdi, JY. Chauleau and M. Vire	P. Zubke	P. Zubko		M. Guennou, J. Kreisel	
CEA, Paris, France	UCL, UK	UCL, UK		List, Luxembourg	
G. Tieri, A. Torres-Pardo, A. Gloter and	O. Stéphan	D. Alexander	F. Brur	n o, F. Baumberger	
University Paris-Sud, France		EPFL, Switzerland	U. Ger	neva, Switzerland	
A. Caviglia et al. University of GenevaA. Cavalleri et al. Max-Planck Hamburg, GermanyD. van der Marel et al. U. Geneva, Switzerland					
N. Jaouen – SOLEIL synchrotron, France JM. Tonnerre – Intitut Néel, France		C. Piamonte SLS-PSI, Swi	e ze, U. Staub tzerland		
T. Schmitt, V. Bisogni	R. Sutarto, F. He				
SLS-PSI, Switzerland (Brookhaven Nation	Canadian Light Source, Canada				
A. Geogerscu, A. Millis, A. Georges	M. Gabay				
CCQ Flatiron institute	University Paris-Sud, France				
R. Green, G. Sawatzky	J. Íñiguez	P. Ghosez, N	1. Schmitt et al.	A. Filippetti	
Columbia University, Canada	LIST, Luxembourg	U. Liège, Bel	Igium	U. Cagliari, Italy	

