Nonclassical behavior in open quantum systems:

wave-particle duality, entanglement, and thermo-kinetic uncertainty relations

arXiv:2212.03835

arXiv:2303.09244

Kacper Prech, Marcelo Janovitch, Matteo Brunelli, Patrick P. Potts

The Team

University of Basel

Nonclassical behavior

Zurek, in Quantum Decoherence. Prog. Math. Phys. 48, (2006)

University of Basel

Motivation

- Fundamental: Understand the difference between quantum and classical
- Practical: Exploit quantum effects for technologies

Fundamental nonclassicality

- Bell nonlocality Bell inequalities
- Contextuality contextuality inequalities

Fundamental nonclassicality

- Bell nonlocality Bell inequalities
- Contextuality contextuality inequalities

Technological nonclassicality

- Cryptography, computing
- Quantum device outperforming (near future) state-of-the art classical devices

Fundamental nonclassicality

- Bell nonlocality Bell inequalities
- Contextuality contextuality inequalities

Technological nonclassicality

- Cryptography, computing
- Quantum device outperforming (near future) state-of-the art classical devices

Nonclassical scaling

- Quantum sensing Heisenberg scaling vs standard quantum limit
- Quantum computing number of qubits vs number of bits

Fundamental nonclassicality

- Bell nonlocality Bell inequalities
- Contextuality contextuality inequalities

Technological nonclassicality

- Cryptography, computing
- Quantum device outperforming (near future) state-of-the art classical devices

ersitv

ısel

Nonclassical scaling

- Quantum sensing Heisenberg scaling vs standard quantum limit
- Quantum computing number of qubits vs number of bits

Ruling out classical models

- Single classical model QED vs classical ED
- Ruling out class of models Thermodynamic uncertainty relations

Ruling out classical models

Observations cannot be reproduced by adequate classical model(s)

Example - quantum optics

Experimental observations in quantum optics may not be explained by classical electro-dynamics

Mandel, Phys. Scr. 1986, 34

Example - thermodynamic uncertainty relation

$$\frac{2\langle I\rangle^2}{\langle\!\langle I^2\rangle\!\rangle\langle\sigma\rangle} \le 1$$

Violation rules out classical Markovian theories Horowitz, Gingrich, Nat. Phys. **16**, 15 (2020)

Insight into the quantum-to-classical transition

Nonclassical behavior in quantum transport

Nonclassical behavior in quantum transport

- Fermionic double quantum dot
- Manifestations of coherence
- Compare to classical rate equation

- Bosonic quantum heat engine
- Wave-particle duality
- Compare to wave/particle model

When can transport be described using classical models?

Fermionic double quantum dot

Entanglement and thermo-kinetic uncertainty relations in coherent mesoscopic transport

arXiv:2212.03835 (accepted in Phys. Rev. Research)

K. Prech, P. Johansson, E. Nyholm, G. T. Landi, C. Verdozzi, P. Samuelsson, P. P. Potts

- g: inter-dot tunneling
- ϵ : on-site energy
- γ_{α} : system-bath couplings

$$\hat{H} = \epsilon \left(\hat{c}_R^{\dagger} \hat{c}_R + \hat{c}_L^{\dagger} \hat{c}_L \right) + g \left(\hat{c}_L^{\dagger} \hat{c}_R + \hat{c}_R^{\dagger} \hat{c}_L \right)$$

A voltage $(\mu_L - \mu_R = eV)$ or temperature bias induces a charge current

The system

- g: inter-dot tunneling
- ϵ : on-site energy
- γ_{α} : system-bath couplings

Manifestations of coherence

- Entanglement Bohr Brask, Haack, Brunner, Huber, New J. Phys. 17, 113029 (2015)
- Violations of TUR Ptaszyński, Phys. Rev. B 98, 085425 (2018)
- Violations of KUR

Goal of our work: understand when these different manifestations of coherence appear

Entanglement

There is entanglement between Alice (A) and Bob (B) iff

$$\hat{\rho} \neq \sum_{i} p_i \hat{\rho}_A^i \otimes \hat{\rho}_B^i$$

Entanglement

There is entanglement between Left (L) and Right (R) dot iff

$$\hat{\rho} \neq \sum_{i} p_{i} \hat{\rho}_{L}^{i} \otimes \hat{\rho}_{R}^{i}$$

DQD steady state

 \Rightarrow when $|\alpha|^2 > p_0 p_D$, then there is entanglement between dots

Thermodynamic uncertainty relations

$$\mathcal{Q}_T \equiv \frac{2\langle I \rangle^2}{\langle\!\langle I^2 \rangle\!\rangle \langle \sigma \rangle} \le 1$$

Holds for classical Markovian models.

- Average current: $\langle I \rangle$
- Current noise: $\langle\!\langle I^2\rangle\!\rangle\equiv\int_{-\infty}^\infty dt[\langle I(t)I(0)\rangle-\langle I\rangle^2]$

• Entropy production:
$$\langle \sigma
angle = -rac{J_c}{T_c} - rac{J_h}{T_h}$$

Entropy production (dissipation) upper bounds the signal-to-noise ratio!

Horowitz, Gingrich, Nat. Phys. 16, 15 (2020)

Thermodynamic uncertainty relations

$$\mathcal{Q}_T \equiv \frac{2\langle I \rangle^2}{\langle\!\langle I^2 \rangle\!\rangle \langle \sigma \rangle} \le 1$$

Holds for classical Markovian models.

Kinetic uncertainty relation

$$\mathcal{Q}_K \equiv \frac{\langle I \rangle^2}{\langle\!\langle I^2 \rangle\!\rangle \langle \mathcal{A} \rangle\!} \le 1$$

 $\langle \mathcal{A} \rangle$: dynamical activity

Terlizzi, Baiesi, J. Phys. A 52, 02LT03 (2018)

$$\mathcal{Q}_{TK} \equiv \frac{\langle I \rangle^2}{\langle\!\langle I^2 \rangle\!\rangle} f(\langle \mathcal{A} \rangle, \langle \sigma \rangle) \leq 1$$

Vo, Vu, Hasegawa, J. Phys. A 55, 405004 (2022)

Models

NEGFs

- Exact for noninteracting electrons
- Equivalent to Landauer-Büttiker scattering theory

$$\langle I \rangle = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \mathcal{T}(\omega) \left[f_L(\omega) - f_R(\omega) \right]$$

Models

 \mathcal{D}

Local master equation

$$\partial_t \hat{\rho} = -i \left[\hat{H}, \hat{\rho} \right] + \sum_{\alpha = h, c} f_\alpha \gamma_\alpha \mathcal{D}[\hat{c}^{\dagger}_{\alpha}] \hat{\rho} + (1 - f_\alpha) \gamma_\alpha \mathcal{D}[\hat{c}_\alpha] \hat{\rho}$$
$$f_\alpha = \frac{1}{e^{(\epsilon - \mu_\alpha)/k_B T_\alpha + 1}}$$

Models

Classical model

$$\partial_t \vec{p} = W \vec{p}$$

Inter-dot rate: $W_{LR} = rac{4g^2}{\gamma_L + \gamma_R}$, all other rates same as in local master equation

Coherence

Peak in coherence

- · Coherent tunneling results in Rabi oscillations between left and right dot
- Rabi oscillations interrupted by classical jumps in and out of the system

ersitv

- For small g/γ , Rabi-oscillations interrupted after short time
- For large g/γ , random phase is acquired before a classical jump

Current and noise

- Average current reproduced by classical model (when local ME is valid)
- Fluctuations suppressed where the peak in coherence is

- Entanglement: static manifestation of coherence
- TUR/KUR violations: dynamic manifestations of coherence

Manifestations of coherence

Concurrence

$$\mathcal{C} = \mathsf{Max}\left\{2|\alpha| - 2\sqrt{p_0 p_D}, 0\right\}$$

$\mathsf{T}/\mathsf{KUR} ext{-violations}$ $\mathcal{V}_j = \max\{\mathcal{Q}_j - 1, 0\}$

- Manifestations at $g\simeq \gamma$
- TUR-violations at small dissipation
- KUR-violations at large dissipation

Bosonic quantum heat engine

The wave-particle duality in a quantum heat engine

arXiv:2303.09244

Marcelo Janovitch, Matteo Brunelli, Patrick P. Potts

The quantum model

Local master equation

 $\mathcal{D}[\hat{A}]\hat{\rho} = \hat{A}\hat{\rho}\hat{A}^{\dagger} - \frac{1}{2}\{\hat{A}^{\dagger}\hat{A},\hat{\rho}\}$

$$\partial_t \hat{\rho} = -i[\hat{H}(t), \hat{\rho}] + \sum_{\alpha=h,c} \bar{n}_\alpha \kappa_\alpha \mathcal{D}[\hat{a}^{\dagger}_{\alpha}]\hat{\rho} + (\bar{n}_\alpha + 1)\kappa_\alpha \mathcal{D}[\hat{a}_\alpha]\hat{\rho}$$

$$\bar{n}_{\alpha} = \frac{1}{e^{\Omega_{\alpha}/k_B T_{\alpha}} - 1}$$

University

of Rasel

Hofer, Souquet, Clerk, PRB 93, 041418(R) (2016); Kosloff, J. Chem. Phys. 80, 1625 (1984)

The wave model

Quantum Langevin equations (Heisenberg picture)

$$\partial_t \hat{a}_h = -\left(i\Omega_h + \frac{\kappa_h}{2}\right)\hat{a}_h - ig\hat{a}_c e^{-it\Delta} - \sqrt{\kappa_h}\hat{\xi}_h$$
$$\partial_t \hat{a}_c = -\left(i\Omega_c + \frac{\kappa_c}{2}\right)\hat{a}_c - ig\hat{a}_h e^{+it\Delta} - \sqrt{\kappa_c}\hat{\xi}_c$$

Quantum white noise: $\langle \hat{\xi}^{\dagger}_{\alpha}(t')\hat{\xi}_{\beta}(t)\rangle_{q} = \bar{n}_{\alpha}\delta_{\alpha\beta}\delta(t'-t), \quad [\hat{\xi}_{\alpha}(t'),\hat{\xi}^{\dagger}_{\beta}(t)] = \delta_{\alpha\beta}\delta(t'-t)$

OTE University

The wave model

Classical Langevin equations

$$\partial_t A_h = -\left(i\Omega_h + \frac{\kappa_h}{2}\right)A_h - igA_c e^{-it\Delta} - \sqrt{\kappa_h}\xi_h$$
$$\partial_t A_c = -\left(i\Omega_c + \frac{\kappa_c}{2}\right)A_c - igA_h e^{+it\Delta} - \sqrt{\kappa_c}\xi_c$$

Classical white noise: $\langle \xi^*_{\alpha}(t')\xi_{\beta}(t)\rangle_w = \bar{n}_{\alpha}\delta_{\alpha\beta}\delta(t'-t)$

University of Basel

The particle model

Classical rate equation

$$\begin{aligned} \partial_t p_{n_h,n_c} &= \kappa_h (\bar{n}_h + 1)(n_h + 1) p_{n_h + 1,n_c} + \kappa_h \bar{n}_h n_h p_{n_h - 1,n_c} \\ &+ \kappa_c (\bar{n}_c + 1)(n_c + 1) p_{n_h,n_c + 1} + \kappa_c \bar{n}_c n_c p_{n_h,n_c - 1} \\ &+ \Gamma_I (n_h + 1) n_c p_{n_h + 1,n_c - 1} + \Gamma_I (n_c + 1) n_h p_{n_h - 1,n_c + 1} - \Gamma_{n_h,n_c}^0 p_{n_h,n_c} \end{aligned}$$

• Rates between system and bath same as in master equation

• Intra-system hopping:
$$\Gamma_I = \frac{4g^2}{\kappa_c + \kappa_h}$$

$$\langle P \rangle_q = -\langle \partial_t \hat{H}(t) \rangle_q$$

$$\langle P \rangle_q = \langle P \rangle_w = \langle P \rangle_p = \frac{4g^2 \kappa_h \kappa_c \Delta(\bar{n}_h - \bar{n}_c)}{(4g^2 + \kappa_h \kappa_c)(\kappa_h + \kappa_c)}$$

$$= \Delta (\bar{n}_h - \bar{n}_c) (\kappa_h^{-1} + \kappa_c^{-1} + \Gamma_I^{-1})^{-1}$$

- The classical models reproduce the average power
- Resembles series addition of three conductances

Noise

$$\langle\!\langle P^2 \rangle\!\rangle = \int_{-\infty}^{\infty} dt \left[\langle P(t)P(0) \rangle - \langle P \rangle^2 \right]$$

- The wave model reproduces shot noise but not vacuum fluctuations
- The particle model reproduces equilibrium noise but exhibits reduced bunching

University of Basel

Wave-particle duality

- Particle model valid for $g\gg\kappa$ and $g\ll\kappa$
- Wave model valid for high temperatures
- Generally, neither wave nor particle descriptions adequate

Conclusions and outlook

arXiv:2212.03835

- Static and dynamic manifestations of coherence for $g\simeq \gamma$
- Model based on classical waves?

arXiv:2303.09244

- Neither waves nor particles reproduce noise
- Can we exploit this insight?

Apply classical "wave" and "particle" models to other setups (e.g. spins, qubits)

University of Basel

Conclusions and outlook

Tutorial on Fluctuations

Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics

Landi, Kewming, Mitchison, Potts

arXiv:2303.04270

