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Anomalous velocity and Berry phase
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Sources of Berry curvature
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Zero for real 
wavefunctions

Large near avoided 
band crossings

ψm

Band anticrossings

mixed bands
Zero for planar spin textures



Ruthenates
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Ru4+ [Kr] 4d4

Tetragonal crystal field splitting of t2g 
orbitals: δ.

Spin-orbit driven mixing with inherent 
quantum phase.

Weyl points acting as sources of 
emergent magnetic fields, anomalous 
Hall conductivity, and unconventional 
spin dynamics. 

Das et al., Phys. Rev. X 8, 011048 (2018)

Itoh et al., Nature Comm 7: 11788 
(2016) 



Ruthenates
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Fang et al. Science 302, 92 (2003)



Anomalous Hall effect from Berry phase
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Berry curvature becomes sizable at 
the anticrossing of spin-orbit split 

bands with a Zeeman term.

Sign changes well described by theory 
that includes Berry phase and impurity 

scattering

Onoda et al. PRL 97, 126602 (2006)



Anomalous Hall effect from Berry phase
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Takahashi et al.
PRL 103, 057204 (2009)

Controlling the AHE by band filling in EuTiO3
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What is the electronic band topology of the 
3D Weyl system SrRuO3 in the two-

dimensional limit?



Model system calculations
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How do the Weyl points evolve in the two-dimensional limit?

Effective Hamiltonian with spin-orbit 
coupling and next-nearest neighbours 

interorbital hopping

2 groups of 3 bands with different 
spin-orbital parity.

Within each sector, 2 topologically 
non-trivial bands with Chern numbers 

+2 and -2 and a single trivial band.
Avoided level crossing at finite k

Mario Cuoco (CNR Spin)

Physical Review Research 2, 023404 (2020)



Model system calculations
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Berry curvature of the topologically non-trivial 
bands.

Sharp peaks with opposite sign located at the 
avoided level crossings.

Since the bands have non-trivial Chern number 
their contribution to the Berry curvature cannot 

vanish and is robust against variations in electron 
occupation.

The splitting and relative occupation of the two 
non-trivial bands determine a competition 

between positive and negative Berry curvature.

Physical Review Research 2, 023404 (2020)



▪ Curved momentum-space leads to an emergent magnetic field, anomalous velocity and Hall 
effect

▪ The curvature appears for complex wavefunctions

▪ Band anticrossings are sources of Berry curvature

▪ Ultrathin SrRuO3 hosts topological bands (two-dimensional vortex-like objects sources of 
Berry curvature)

Question: How to manipulate these charges? 

Let’s open up the complex oxide toolbox…

Intermediate summary



RuO2/LaO interface

13Physical Review Letters (2021) arXiv:2107.03359

Thierry van Thiel



Charge reconstruction
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??

Physical Review Letters 127, 127202 (2021)



Charge reconstruction
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Magnetic reconstruction
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Berry curvature reconstruction in 
bilayer SRO
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18Physical Review Letters 127, 127202 (2021)



19Physical Review Letters 127, 127202 (2021)



20Physical Review Letters 127, 127202 (2021)



Research question
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Can we engineer Berry curvature
at time-reversal invariant (non-magnetic) oxide interfaces?



Exploring hexagonal symmetry
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Trigonal warping
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Phys. Rev. B 99, 201102R (2019)



Out-of-plane spin texture
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Surface of (111)SrTiO3
He et al. Physical Review Letters 120, 
266802 (2018)



Out-of-plane spin texture
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Surface of (111)KTaO3
Bruno et al. Advanced Electronic Materials, 
1800860 (2019)



Spin sources of Berry curvature

26

ത1ത12
k

k ത110
-Ω*k

+Ω*k

εF



In-plane magnetic field
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In-plane magnetic field
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Spin sources of Berry curvature
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Spin sources of Berry curvature
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Research question
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Are there phenomena manifesting at B = 0?



Orbital sources of Berry curvature
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Hot spots Singular pinch points

t2g orbitals with mixing terms:
Δ trigonal crystal field

Δm tetragonal distortion (T < 105 K),
αOR interfacial breaking of inversion symmetry 

with polar axis (T < 30 K) 



Orbital sources of Berry curvature
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Prediction:
BCD in the 10s nm range!



Non linear Hall effect at B=0
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Dipole magnitude
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WTe2

Ma et al. Nature 565, 337 (2019)

Sodemann, I. & Fu, L.. Phys. Rev. Lett. 115, 

216806 (2015)

(111)LaAlO3/SrTiO3



Conclusions and future directions
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▪ Curved momentum-space leads to an emergent magnetic field, anomalous velocity and Hall 
effect

▪ Ultrathin SrRuO3 hosts topological bands

▪ Real-space charge reconstruction modifies the momentum-space Berry curvature in SrRuO3, 
driving a reorganization of the topological charges in the band structure

▪ (111)LaAlO3/SrTiO3 is the first example of a material system hosting coexisting spin and
orbital sources of Berry curvature

(111)KTaO3
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