Berry phase engineering at oxide interfaces

Caviglia Lab Department of Quantum Matter Physics University of Geneva

Collaborators and funding

Thierry van Thiel, Yildiz Saglam, Edouard Lesne, Ulderico Filippozzi, Patrick Blah, Graham Kimbell

Carmine Autieri**,** Wojciech Brzezicki, **Mario Cuoco** *CNR Spin*

Nicolas Gauquelin, J. Verbeeck University of Antwerp

Marc Gabay *Uni Paris Sud*

Raffaele Battilomo, **Carmine Ortix** *Uni Utrecht Uni Salerno*

GORDON AND BETTY MOORE FOUNDATION

Anomalous velocity and Berry phase

$$\gamma_n = \int_C A_n(\mathbf{k}) \cdot d\mathbf{k}$$

$$\gamma_n = \oint_{\Omega} \boldsymbol{B}_n(\boldsymbol{k}) \cdot d\boldsymbol{\Omega}$$

 $\boldsymbol{A}_{n}(\boldsymbol{k}) = -i\langle u_{n}(\boldsymbol{k}) | \nabla_{\boldsymbol{k}} | u_{n}(\boldsymbol{k}) \rangle$

Berry

Connection

$$\boldsymbol{B}_n(\boldsymbol{k}) = \nabla_{\mathbf{k}} \times \boldsymbol{A}_n(\boldsymbol{k})$$

Berry Curvature

$$\boldsymbol{v}_n(\boldsymbol{k}) = \frac{1}{\hbar} \nabla_{\boldsymbol{k}} \epsilon_n(\boldsymbol{k}) - \frac{e}{\hbar} \boldsymbol{E} \times \boldsymbol{B}_n(\boldsymbol{k})$$

Karplus, Luttinger Phys. Rev. 95, 1154 (1954) Berry Proc. R. Soc. London A 392, 45 (1984) Chang, Niu PRL 75, 1348 (1995)

Sources of Berry curvature

Zero for real wavefunctions

Zero for planar spin textures

 $\Omega_z^{\pm}(\mathbf{k}) = \pm \hat{\mathbf{d}} \cdot (\partial_{k_x} \hat{\mathbf{d}} \times \partial_{k_y} \hat{\mathbf{d}})/2.$

Large near avoided band crossings

$$\mathcal{B}_{z} = \left[\langle \psi_{m} | \nabla \psi_{n} \rangle \times \langle \nabla \psi_{n} | \psi_{m} \rangle \right]_{z}$$
$$= \frac{\left[\langle \psi_{m} | \nabla \hat{H} | \psi_{n} \rangle \times \langle \psi_{n} | \nabla \hat{H} | \psi_{m} \rangle \right]_{z}}{\left(\epsilon_{m} - \epsilon_{n}\right)^{2}}$$

Ruthenates

Ru⁴⁺ [Kr] 4d⁴

Tetragonal crystal field splitting of t2g orbitals: δ .

Spin-orbit driven mixing with inherent quantum phase.

Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics.

Itoh et al., Nature Comm 7: 11788 (2016)

Das et al., Phys. Rev. X 8, 011048 (2018)

Ruthenates

Fang et al. Science 302, 92 (2003)

Anomalous Hall effect from Berry phase

Berry curvature becomes sizable at the anticrossing of spin-orbit split bands with a Zeeman term.

Sign changes well described by theory that includes Berry phase and impurity scattering

Onoda et al. PRL 97, 126602 (2006)

Anomalous Hall effect from Berry phase

Controlling the AHE by band filling in EuTiO3

Takahashi et al. PRL 103, 057204 (2009) What is the electronic band topology of the 3D Weyl system SrRuO₃ in the twodimensional limit?

Model system calculations

How do the Weyl points evolve in the two-dimensional limit?

Effective Hamiltonian with spin-orbit coupling and next-nearest neighbours interorbital hopping

Mario Cuoco (CNR Spin) Physical Review Research 2, 023404 (2020) 2 groups of 3 bands with different spin-orbital parity. Within each sector, 2 topologically non-trivial bands with Chern numbers +2 and -2 and a single trivial band. Avoided level crossing at finite k

Model system calculations

Berry curvature of the topologically non-trivial bands.

Sharp peaks with opposite sign located at the avoided level crossings.

Since the bands have non-trivial Chern number their contribution to the Berry curvature cannot vanish and is robust against variations in electron occupation.

The splitting and relative occupation of the two non-trivial bands determine a competition between positive and negative Berry curvature.

Physical Review Research 2, 023404 (2020)

Intermediate summary

- Curved momentum-space leads to an emergent magnetic field, anomalous velocity and Hall effect
- The curvature appears for complex wavefunctions
- Band anticrossings are sources of Berry curvature
- Ultrathin SrRuO₃ hosts topological bands (two-dimensional vortex-like objects sources of Berry curvature)

Question: How to manipulate these charges? Let's open up the complex oxide toolbox...

RuO₂/LaO interface

Thierry van Thiel

Physical Review Letters (2021) arXiv:2107.03359

Charge reconstruction

Physical Review Letters 127, 127202 (2021)

Charge reconstruction

Magnetic reconstruction

Berry curvature reconstruction in bilayer SRO

Physical Review Letters 127, 127202 (2021)

Physical Review Letters 127, 127202 (2021)

Physical Review Letters 127, 127202 (2021)

Research question

Can we engineer Berry curvature at time-reversal invariant (non-magnetic) oxide interfaces?

Exploring hexagonal symmetry

Trigonal warping

Out-of-plane spin texture

Surface of (111)SrTiO3 He et al. Physical Review Letters 120, 266802 (2018)

Out-of-plane spin texture

Surface of (111)KTaO3 Bruno et al. Advanced Electronic Materials, 1800860 (2019)

Spin sources of Berry curvature

In-plane magnetic field

In-plane magnetic field

28

Spin sources of Berry curvature

Spin sources of Berry curvature

Research question

Are there phenomena manifesting at B = 0?

Orbital sources of Berry curvature

 t_{2g} orbitals with mixing terms: Δ trigonal crystal field Δ_m tetragonal distortion (T < 105 K), α_{OR} interfacial breaking of inversion symmetry with polar axis (T < 30 K)

Hot spots

Singular pinch points

$$\mathscr{H}_{\mathrm{OR}}(\mathbf{k}) = \frac{\mathbf{k}^2}{2m} \Lambda_0 + \Delta \left(\Lambda_3 + \frac{1}{\sqrt{3}} \Lambda_8 \right) + \Delta_m \left(\frac{1}{2} \Lambda_3 - \frac{\sqrt{3}}{2} \Lambda_8 \right) - \alpha_{\mathrm{OR}} \left[k_x \Lambda_5 + k_y \Lambda_2 \right] - \alpha_m k_x \Lambda_7$$

Orbital sources of Berry curvature

Prediction: BCD in the 10s nm range!

Non linear Hall effect at B=0

Dipole magnitude

WTe₂ Ma et al. Nature 565, 337 (2019) Sodemann, I. & Fu, L.. Phys. Rev. Lett. 115, 216806 (2015)

(111)LaAlO₃/SrTiO₃

Conclusions and future directions

- Curved momentum-space leads to an emergent magnetic field, anomalous velocity and Hall effect
- Ultrathin SrRuO₃ hosts topological bands
- Real-space charge reconstruction modifies the momentum-space Berry curvature in SrRuO₃, driving a reorganization of the topological charges in the band structure
- (111)LaAlO₃/SrTiO₃ is the first example of a material system hosting coexisting spin and orbital sources of Berry curvature

(111)KTaO₃

Collaborators and funding

Thierry van Thiel, Yildiz Saglam, Edouard Lesne, Ulderico Filippozzi, Patrick Blah, Graham Kimbell

Carmine Autieri**,** Wojciech Brzezicki, **Mario Cuoco** *CNR Spin*

Nicolas Gauquelin, J. Verbeeck University of Antwerp

Marc Gabay *Uni Paris Sud*

Raffaele Battilomo, **Carmine Ortix** *Uni Utrecht Uni Salerno*

GORDON AND BETTY MOORE FOUNDATION

