

# Optical conductivity of strange metals

Christophe Berthod FLAT Club

Geneva, 30/09/2022

[1] arXiv:2204.10284 [2] arXiv:2205.00899 [PRB **106**, 054515 (2022)] [3] arXiv:2205.04030

## Outline

- 1. Optical spectroscopy
  - How to measure?
  - How to interpret?
  - How to calculate?
- 2. Strange metals
  - Linear resistivity, so what?
  - Strange versus bad metals
  - Generic model of Planckian dissipation
- 3. Today's menu
  - [3] arXiv:2205.04030
  - [2] arXiv:2205.00899 [PRB 106, 054515 (2022)]
  - [1] arXiv:2204.10284

## **Optical spectroscopy** (infrared)

Target of the experiment

$$\boldsymbol{\epsilon}(\boldsymbol{q}, \boldsymbol{\omega})$$

#### the dielectric function

"Screening is one of the most important concepts in many-body theory" Gerald D. Mahan



## **Optical measurements**



#### Qualitative expectations for a metal



## Computing the conductivity

#### Kubo formula

$$\sigma(\omega) = \frac{i}{\omega} \left[ C_{J_x J_x}(\omega) + \frac{ne^2}{m} \right], \qquad C_{J_x J_x}(\omega) = -\frac{i}{\hbar} \int_0^\infty dt \, e^{i\omega t} \langle [J_x(t), J_x(0)] \rangle$$

Local limit (no vertex corrections)

$$\sigma(\omega) = \frac{ie^2}{\omega} \sum_{k\sigma} v_{kx}^2 \int_{-\infty}^{\infty} d\varepsilon_1 d\varepsilon_2 \frac{f(\varepsilon_1) - f(\varepsilon_2)}{\hbar\omega + \varepsilon_1 - \varepsilon_2 + i0} A(k, \varepsilon_1) A(k, \varepsilon_2)$$

$$v_{kx} = \frac{1}{\hbar} \frac{\partial \varepsilon_k}{\partial k_x}$$

$$A(k, \varepsilon) = \frac{-\Sigma_2(\varepsilon)/\pi}{[\varepsilon - \varepsilon_k - \Sigma_1(\varepsilon)]^2 + [\Sigma_2(\varepsilon)]^2}$$

$$\sum(\varepsilon) = \Sigma_1(\varepsilon) + i\Sigma_2(\varepsilon)$$
Ingredients of the calculation  $\Sigma(\varepsilon)$  one-particle dispersion  $\Sigma(\varepsilon)$  one-particle self-energy

#### $\epsilon_{\infty}$ — Separating high- and low-energy transitions

Can we compare  $\sigma_{\exp}(\omega) = i\epsilon_0 \omega [1 - \epsilon(\omega)]$  with  $\sigma_{\text{theo}}(\omega)$ ?

No  $-\sigma_{\rm theo}$  contains only low-energy transitions, while  $\sigma_{\rm exp}$  contains all transitions.

We must separate high- and low-energy transitions

 $\epsilon(\omega) = 1 + \epsilon_{low}(\omega) + \epsilon_{high}(\omega)$ 

and subtract the high-energy transitions

$$\sigma_{\rm low}(\omega) = i\epsilon_0 \omega \left\{ 1 - \left[ \epsilon(\omega) - \epsilon_{\rm high}(\omega) \right] \right\}$$

If the high-energy transitions are well separated

$$\sigma_{\rm low}(\omega) \approx i\epsilon_0 \omega \Big[\underbrace{1 + \epsilon_{\rm high}(0)}_{\epsilon_{\infty}} - \epsilon(\omega)\Big]$$

Standard conversion formula

$$\sigma(\omega) = i\epsilon_0\omega[\epsilon_\infty - \epsilon(\omega)]$$



#### Extended Drude "model"

# Drude conductivity

$$\sigma_{\rm Drude}(\omega) = \frac{ne^2/m}{-i\omega + 1/\tau}$$

#### Sum rule

$$\frac{2}{\pi}\int_0^\infty d\omega\operatorname{Re}\sigma_{\operatorname{Drude}}(\omega)=\frac{ne^2}{m}$$

Ohm's law 
$$\sigma = \frac{J}{E} = \frac{nev}{E}$$
  
Newton's law  $\dot{v} = \frac{eE}{m} - \frac{v}{\tau}$  $(-i\omega + 1/\tau)v = \frac{eE}{m}$ 

Extended Drude model  $\sigma(\omega) = \frac{\epsilon_0 \omega_p^2}{-i\omega m^*(\omega)/m + 1/\tau(\omega)}$ Sum rule

$$\epsilon_0 \omega_p^2 = \frac{2}{\pi} \int_0^\infty d\omega \operatorname{Re} \sigma(\omega)$$

$$m \to m^*(\omega) \qquad \dot{v} \to \dot{v} \frac{m^*(\omega)}{m}$$

$$\frac{1}{\tau(\omega)} = \operatorname{Re} \epsilon_0 \omega_p^2 \frac{1}{\sigma(\omega)}$$

$$\frac{m^*(\omega)}{m} = \operatorname{Im} \frac{1}{-\omega} \epsilon_0 \omega_p^2 \frac{1}{\sigma(\omega)}$$

**Optical spectroscopy — Summary** 



 $La_{2-x}Sr_{x}CuO_{4} @ x = 0.19$ 

Linear resistivity Observed in high-T<sub>c</sub> cuprates, some Fe-based superconductors, some heavy-fermion materials, twisted bilayer graphene, etc...

Giraldo-Gallo et al., Science 361, 479 (2018)



## **Resistivity and many-body spectrum**

Because the energy is extensive, a system of size *N* has maximum energy of order *N*.

How are the  $\sim e^N$  energy levels distributed?

For independent particles, the inter-level spacing at low-energy is  $\Delta E \sim 1/N$ .



## Resistivity and many-body spectrum



### **Resistivity and many-body spectrum**

Because the energy is extensive, a system of size *N* has maximum energy of order *N*.

How are the  $\sim e^N$  energy levels distributed?

For independent particles, the inter-level spacing at low-energy is  $\Delta E \sim 1/N$ .



For Landau quasiparticles, 
$$\Delta E \sim 1/N$$
 as well.  
Pauli-limited scattering rate  

$$\frac{\hbar}{\tau_{qp}} \sim U^2 N(E_F) \left(\frac{k_B T}{E_F}\right)^2 \ll E_{qp} \sim k_B T$$

# How fast can a quantum system equilibrate?

Heisenberg uncertainty principle

$$\Delta E \cdot \Delta t \gtrsim \hbar$$

For a quantum system in equilibrium at temperature T

$$\Delta E \sim k_{\rm B}T \quad \Rightarrow \quad \Delta t \gtrsim \frac{\hbar}{k_{\rm B}T}$$

 $8 \times 10^{-12}$  second at 1 Kelvin

If transport times coincide with equilibration times

$$\tau = \alpha \frac{\hbar}{k_{\rm B}T}, \qquad \alpha = O(1) \quad \Rightarrow \quad \rho \propto \frac{1}{\tau} \propto T$$

## The good, the bad, and the strange

#### Mott-Ioffe-Regel limit

$$\ell = v_{\rm F} \tau > k_{\rm F}^{-1} \quad \Rightarrow \quad \tau > \frac{m}{\hbar k_{\rm F}^2}$$

#### Saturation of resistivity

$$\rho = \frac{m}{ne^2\tau} < \frac{\hbar k_{\rm F}^2}{ne^2}$$

#### Gunnarsson et al., Rev. Mod. Phys. 75, 1085 (2003)



#### Self-energy of a strange metal

The exactly-solvable models (e.g. SYK) show that the one-particle scattering rate has the scaling form

$$-\mathrm{Im}\,\Sigma(\varepsilon) \propto k_{\mathrm{B}}TS\left(\frac{\varepsilon}{k_{\mathrm{B}}T}\right)$$

The causal (Kramers-Kronig consistent) complex self-energy is

$$\Sigma(z) = g k_{\rm B} T \int_{\Lambda} dx \, \frac{S(x)}{z/k_{\rm B} T - x}$$



#### Planckian Behavior of Cuprate Superconductors: Reconciling the Scaling of Optical Conductivity with Resistivity and Specific Heat

B. Michon,<sup>1,2,3</sup> C. Berthod,<sup>3</sup> C. W. Rischau,<sup>3</sup> A. Ataei,<sup>4</sup> L. Chen,<sup>4</sup> S. Komiya,<sup>5</sup> S. Ono,<sup>5</sup> L. Taillefer,<sup>4,6</sup> D. van der Marel,<sup>3</sup> and A. Georges<sup>7,8,3,9</sup>

- 1. Approximate  $\omega/T$  scaling in the theoretical conductivity
- 2. Good  $\omega/T$  scaling collapse with similar scaling functions in the data
- 3. *T*-linear resistivity and  $g \log T$  specific heat predicted and observed
- 4. Power law with anomalous exponent  $v^*(g) < 1$  predicted in the infrared
- 5. Anomalous exponent  $v^*$  in the data consistent with g from the specific heat

#### [3] arXiv:2205.04030 — Michon et al. (Geneva, Sherbrooke)



### [3] arXiv:2205.04030 — Michon et al. (Geneva, Sherbrooke)



- 1. Approximate  $\omega/T$  scaling in the theoretical conductivity
- 2. Good  $\omega/T$  scaling collapse with similar scaling functions in the data
- 3. *T*-linear resistivity and  $g \log T$  specific heat predicted and observed
- 4. Power law with anomalous exponent  $v^*(g) < 1$  predicted in the infrared
- 5. Anomalous exponent  $v^*$  in the data consistent with g from the specific heat

The optical conductivity, resistivity, and specific heat of  $La_{2-x}Sr_xCuO_4$ , x = 0.24, are mutually consistent with a Planckian dissipation scenario.

#### PHYSICAL REVIEW B 106, 054515 (2022)

#### Strange metal electrodynamics across the phase diagram of $Bi_{2-x}Pb_xSr_{2-y}La_yCuO_{6+\delta}$ cuprates

Erik van Heumen <sup>0</sup>,<sup>1,2,\*</sup> Xuanbo Feng (馮嗣博) <sup>0</sup>,<sup>1,2</sup> Silvia Cassanelli,<sup>1</sup> Linda Neubrand,<sup>1</sup> Lennart de Jager,<sup>1</sup> Maarten Berben,<sup>1</sup> Yingkai Huang,<sup>1</sup> Takeshi Kondo,<sup>3</sup> Tsunchiro Takeuchi,<sup>4</sup> and Jan Zaanen<sup>5,7</sup> <sup>1</sup>van der Waals - Zeeman Institute, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands <sup>2</sup>QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands <sup>3</sup>Institute for Solid State Physics, University of Tokyo, Kashiwa-no-ha, Kashiwa, Japan <sup>4</sup>Toyota Technological Institute, Nagoya 468-8511, Japan <sup>5</sup>Lorent: Institute, Universitei Leiden, The Netherlands





## One-component analysis of a two-component conductivity

Two-component Drude model

$$\sigma(\omega) = \frac{W_1}{-i\omega + 1/\tau_1} + \frac{W_2}{-i\omega + 1/\tau_2}$$

#### Extended Drude analysis

$$\sigma(\omega) = \frac{W}{-i\omega m^*(\omega)/m + 1/\tau(\omega)}$$







#### Two-component analysis

#### (1) Pure Drude response

#### (2) "Conformal tail"

In text books, this Drude response is typically tied to quasiparticles—by reference to the Sommerfeld model—and it was conceptualized like this in this early era. However, such a Drude response is actually completely generic for *any* finite density charged fluid living in a spatial manifold characterized by a weak translational symmetry breaking [20]. It just reflects the fact that the total momentum of the fluid is long-lived (see Sec. II). For instance, the "unparticle" fluids of AdS/CFT

Although the origin of the conformal tail is presently completely in the dark its gross properties may be best understood as reflecting some form of *bound* optical response—it may be viewed as the analog of interband transitions in the strongly interacting electron soup.

Model

$$\hat{\sigma}(\omega) = \hat{\sigma}^{D}(\omega) + \hat{\sigma}^{\text{inc}}(\omega),$$
$$\hat{\sigma}^{D}(\omega) = D_{\text{Dr}}$$

$$\hat{\sigma}^{\text{inc}}(\omega) = \frac{\Gamma_{\text{Dr}} - i\omega}{(\Delta^2 - \omega^2 - i\Gamma_{\text{inc}}\omega)^{\beta}}$$





#### [1] arXiv:2204.10284 — Kumar et al. (Vienna, Fribourg, Brookhaven)

## Optical conductivity of cuprates in a new light



#### Quasiparticle scattering rate

$$\frac{\hbar}{\tau_{\rm qp}} \propto (\hbar\omega)^2 + (\pi k_{\rm B} T)^2$$

**Optical** scattering rate

$$\frac{\hbar}{\tau} \propto (\hbar \omega)^2 + (2\pi k_{\rm B} T)^2$$



Gurzhi, JETP **35**, 673 (1959) Berthod *et al.*, PRB **87**, 115109 (2013)

#### [1] arXiv:2204.10284 — Kumar et al. (Vienna, Fribourg, Brookhaven).



#### [1] arXiv:2204.10284 — Kumar et al. (Vienna, Fribourg, Brookhaven)



#### [1] arXiv:2204.10284 — Kumar et al. (Vienna, Fribourg, Brookhaven)



Conclusion

"Pluralitas non est ponenda sine necessitate" William of Ockham



Thank you for listening