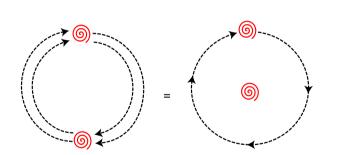
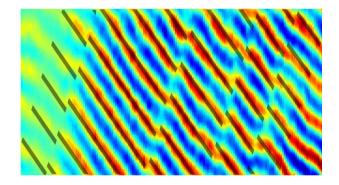
Detection of anyonic braiding statistics in the fractional quantum Hall effect



Johannes Motruk

Département de Physique Théorique, Université de Genève



Mainly based on:

Nakamura et al., Nature Physics 16, 931 (2020)

DQMP Flat Club, 03/12/2021

Hall effect

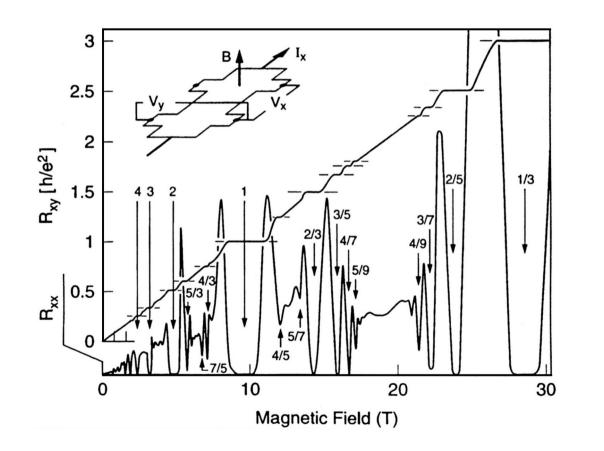
2D electron gas in a perpendicular magnetic field: $\vec{E} = 0$ $\vec{B} = B\hat{z}$

Go to reference frame that moves with $-\vec{v}$ relative to lab frame

$$\vec{j} = -ne\vec{v} \qquad \vec{E} = -\frac{1}{c}\vec{v}\times\vec{B} \qquad \vec{B} = B\hat{z}$$
$$\vec{E} = \frac{1}{nec}\vec{j}\times\vec{B}$$
$$\vec{E} = \frac{\rho}{\underline{r}}\cdot\vec{j} \qquad \underline{\rho} = \frac{B}{nec}\begin{pmatrix} 0 & +1\\ -1 & 0 \end{pmatrix}$$
$$\vec{j} = \underline{\sigma}\cdot\vec{E} \qquad \underline{\sigma} = \frac{nec}{B}\begin{pmatrix} 0 & -1\\ +1 & 0 \end{pmatrix}$$

Hall resistivity is linear in the magnetic field, inversely proportional to electron density

The quantum Hall effect – data



$$\sigma_{xy} = \nu \frac{e^2}{h}$$
$$\rho_{xy} = \frac{h}{\nu e^2}$$

$$\sigma_{xx} = \rho_{xx} = 0$$

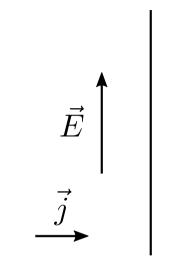
$$\sigma_{xx} \propto e^{-\Delta/T}$$

Quantization accuracy: 10^{-10}

Unavodiable conlcusions

I) Gap must close at the edge

2) Quasiparticles have to have charge νe

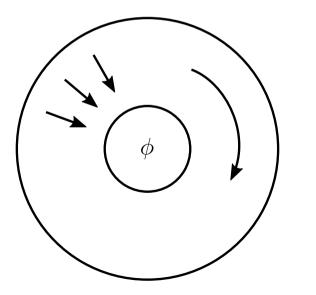


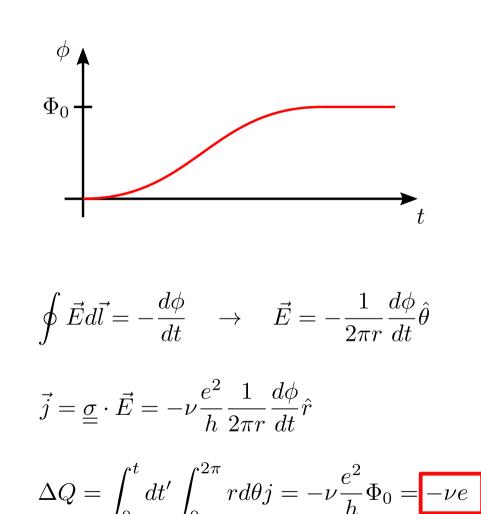
 $P \propto ec{j} \cdot ec{E}$

Unavodiable conlcusions

I) Gap must close at the edge

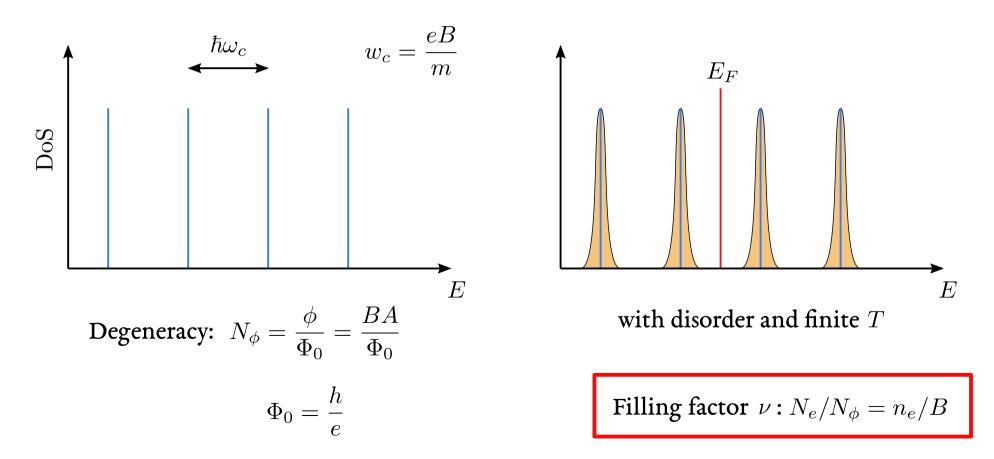
2) Quasiparticles have to have charge ve





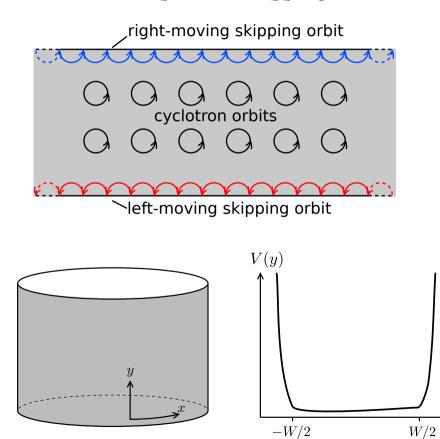
Landau levels

Quantum mechanical treatment of particles in magnetic field in 2D



Edge states

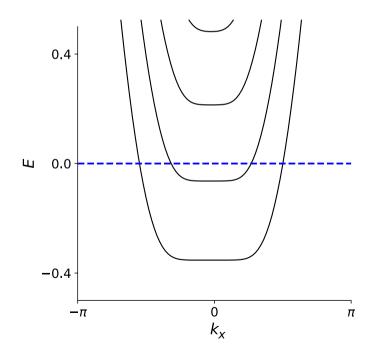
Semiclassical picture: skipping orbits



→ y

Landau level picture

$$\psi_{n,k_x} \propto e^{ik_x x} H_n(y+k_x l_B^2) e^{-\frac{1}{2l_B^2}(y+k_x l_B^2)^2}$$



Fractional quantum Hall effect (FQHE)

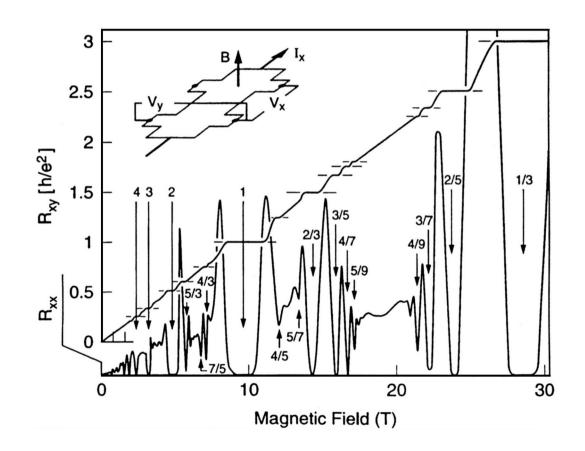
Phenomenology very similar

- Quantization of σ_{xy}
- Chiral edge states

But...

FQHE is a genuine many-body state

Fundamentally different from integer QHE



Statistics of quasiparticles

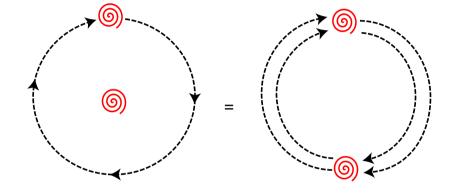
Laughlin wave function for filling factor 1/m

Laughlin 1983

$$\psi_m = \prod_{j < k} (z_j - z_k)^m e^{-\frac{1}{4}\sum_l |z_l|^2}$$

With a quasihole at z_0

$$\psi_m^{+z_0} = N_+ \prod_i (z_i - z_0) \psi_m$$



Adiabatically moving one quasihole around another leads to phase

$$\Delta \gamma = 2\pi\nu$$

Halperin 1984; Avoras, Schrieffer and Wilczek 1984

General: Topological order

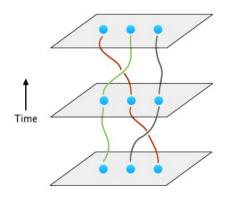
- Long-range entangled quantum state in (2+1)D characterized by

 (1) a chiral central charge, and
 (2) a unitary modular tensor category (UMTC)
- UMTC contains topological charges (quasiparticles) and their fusion and braiding rules
 → quasiparticles can be non-Abelian

Topological order

- Fractional quantum Hall effect
- Some spin liquids

 (Chiral spin liquids, Kitaev's toric code, ...)

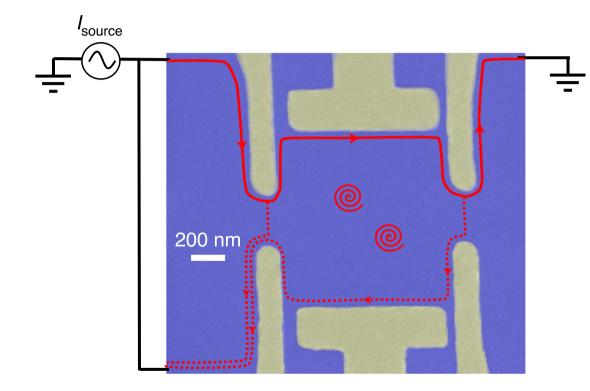


No topological order

- Topological insulators
- Majorana wires

• ...

Quantum Hall Fabry-Perot interferometer



Phase:

$$\theta = 2\pi \frac{e^*}{e} \frac{A_I B}{\Phi_0} + N_{\rm qp} \theta_{\rm anyon}$$

Conductivity:

 $G \propto \cos(\theta)$

2

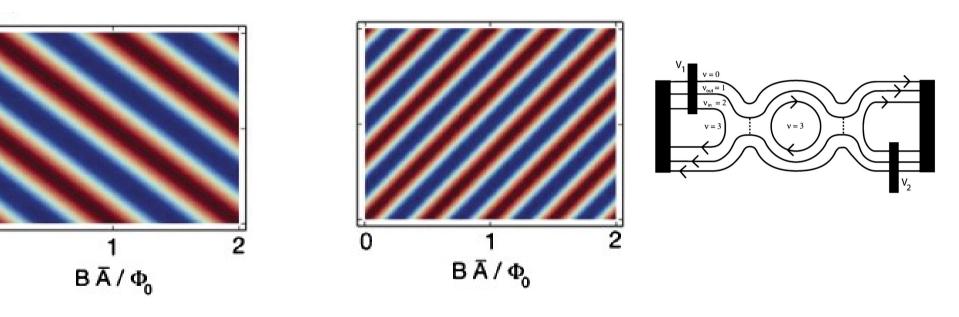
0

0

βδζ

Aharonov-Bohm regime

Coulomb-dominated regime



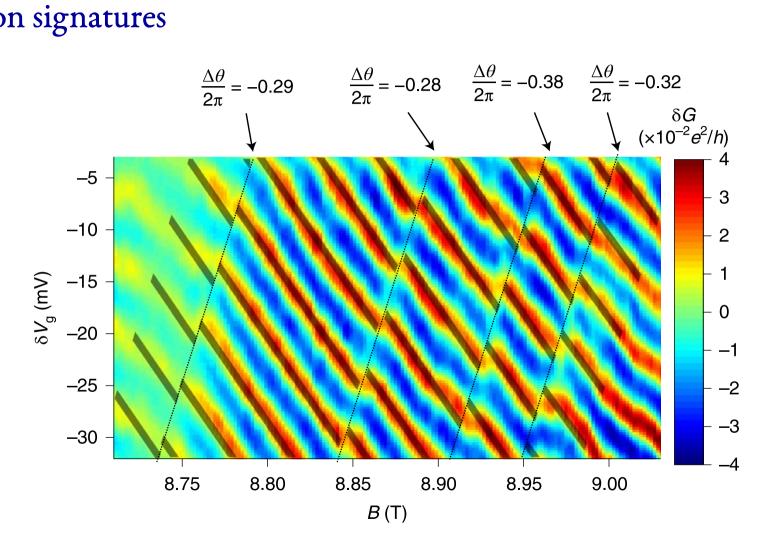
$$\theta = 2\pi \frac{e^*}{e} \frac{A_I B}{\Phi_0}$$

$$A_{I} = \overline{A}(B, V_{G}) + \delta A_{I}$$
$$\delta R = \operatorname{Re}\left(\sum_{-\infty}^{\infty} R_{m} e^{2\pi i (m\phi + \alpha_{m} \delta V_{G})}\right)$$

Experimental setup

10nm GaAs						
65nm Al _{0.36} Ga _{.64} As		I _{source}				
	Si δ -doping					<u> </u>
45nm Al _{0.36} Ga _{.64} As		-				-
2nm AlAs	T O 1 M/ II					
13nm GaAs 2nm AlAs	Top Screening Well		Ť			
25nm Al _{0.36} Ga _{.64} As			Ų	@ \	Ų	
30nm GaAs	Primary Well		200 nm	©		
25nm Al _{0.36} Ga _{.64} As			¥ \.			
2nm AlAs						
13nm GaAs	Bottom Screening Well	l				
2nm AlAs						
45nm Al _{0.36} Ga _{.64} As	Si δ -doping					
Substrate						

Anyon signatures

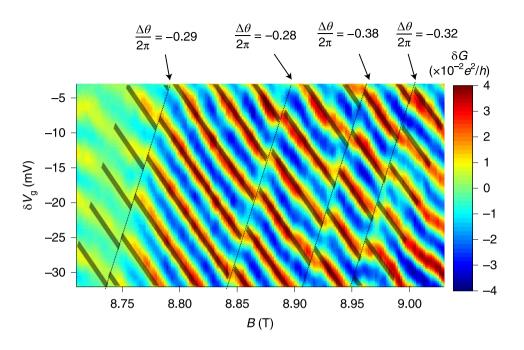


Anyon signatures

- Lines of constant phase with negative slope → AB regime
- Discrete phase slips
 - → quasihole/-particle creation/removal → random distance in B

$$\delta G = \delta G_0 \cos\left(2\pi \frac{1}{3} \frac{A_I B}{\Phi_0} + \theta_0\right)$$

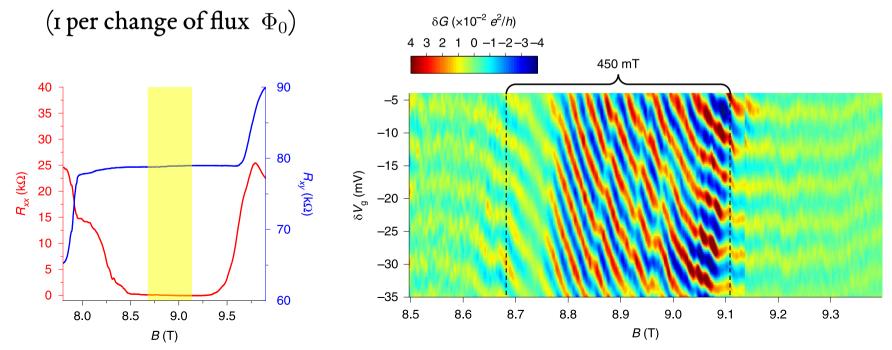
 $\theta_{\rm anyon} = 2\pi \times (0.31 \pm 0.04)$

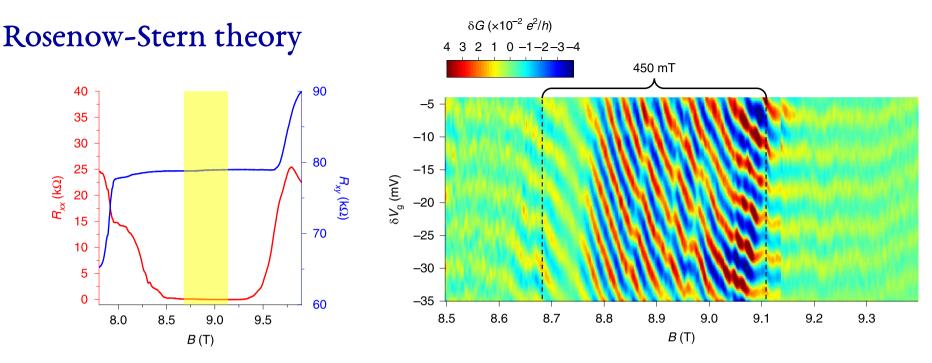


- Jumps across lines with positive slope
 → Increase in B removes quasiparticles
 - \rightarrow Increase in V_g favors localized quasiparticles

Rosenow-Stern theory

- Theory for interferometer in $\nu = 1/3$ state with strong screening
- Predicts two regimes as function of magnetic field
 - \rightarrow center of plateau: constant filling
 - \rightarrow edges of plateau: constant density many quasiparticles/-holes created/removed





Why barely dependent on B?

- Adding one flux quantum leads to additional Aharonov-Bohm phase of $2\pi/3$
- Simultaneously one quasiparticle (quasihole) will be removed (added) in the low (high) field regime \rightarrow phase shift of $-2\pi/3$
- Thermal smearing makes it continuous

Rosenow-Stern theory

Width of constant filling factor estimate

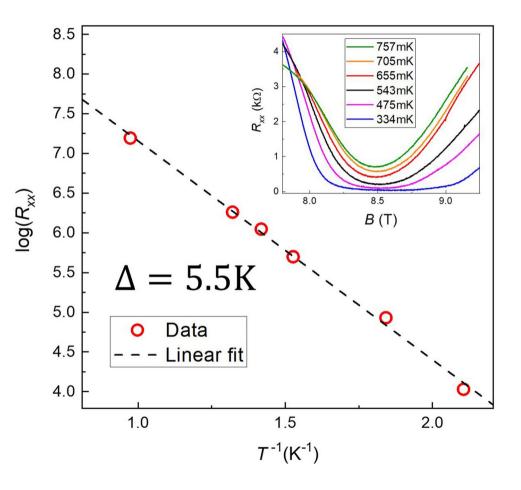
$$\Delta B_{\text{constant }\nu} = \frac{\Delta_{1/3} \Phi_0 C_{\text{SW}}}{\nu e^2 e^*}$$

 $\Delta_{1/3}$ – gap

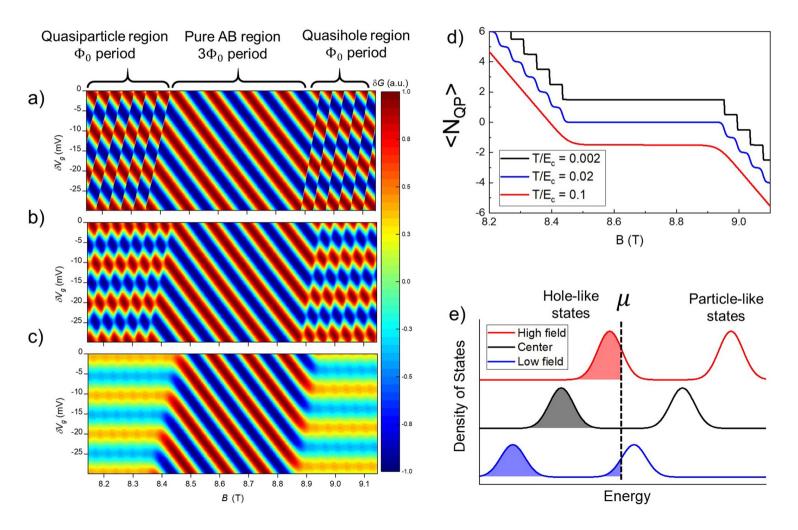
 $C_{\rm SW} = rac{2\epsilon}{d}$ – Capacitance per unit area of the screening layers

Theory: $\approx 530 \text{ mT}$

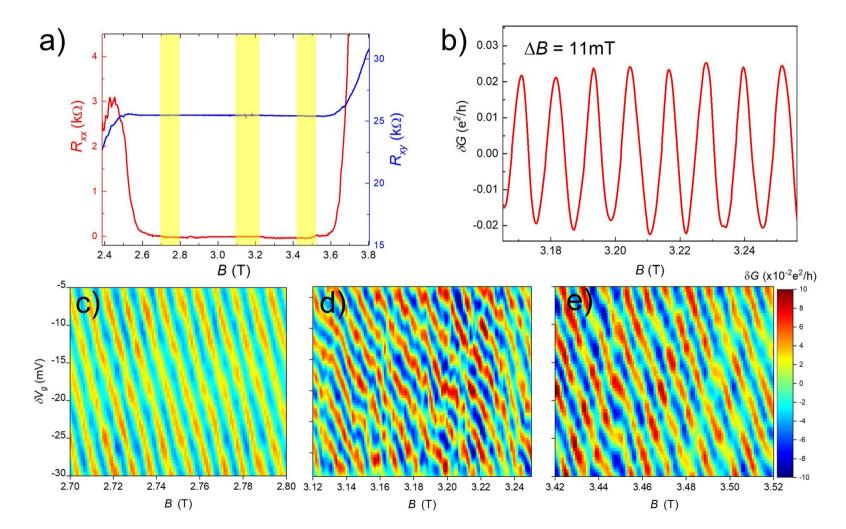
Experiment: $\sim 450 \text{ mT}$



Simulations

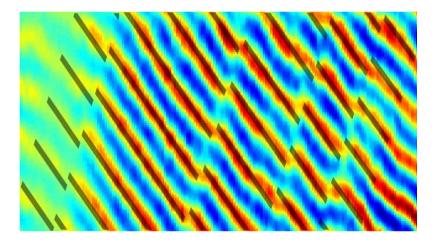


Comparison to $\nu = 1$



Summary: Anyon braiding in the FQH

- Quantum Hall Fabry-Perot interferometer in Aharonov-Bohm limit
- Discrete phase slips provide signal for anyonic quasiparticles
- Different behavior at weaker/stronger field compared to central plateau consistent with theory



Open question

• Non-Abelian braiding?