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theory based on the Ginzburg–Landau model. Tinkham 
pointed out in 1963 (REF. 33) that the cusp-like peak is 
one of the clear signatures of geometrical effects in 2D 
superconductors.

2D superconductors have many interesting properties, 
such as localization of electrons and/or Cooper pairs34, 
transition-temperature oscillations caused by quantum 
size effects16,35,36, excess conductivity originating from 
superconducting fluctuations37–39, Berezinskii–Kosterlitz–
Thouless (BKT) transitions40–42 and QPTs at zero tem-
perature43,44. In particular, the BKT transition, which is 
a transition from unpaired vortices and antivortices to 
bound vortex–antivortex pairs, is treated as the evidence 
of a 2D superconducting transition45 (FIG. 2a). The BKT 
transition manifests itself as a jump in the power-law 
exponent at the zero-current limit in current–voltage  
characteristic curves and in a disappearance of ohmic 
resistance obeying the Halperin–Nelson scaling law.

One of the most debated issues in 2D super-
conductivity is the QPT between the superconducting 
and the insulating phase43,44. The superconductor–insu-
lator transition (SIT) in metallic thin films occurs at the 
zero-temperature limit as a function of external tuning 
parameters, such as disorder, film thickness, out-of-plane 
magnetic fields, in-plane electric fields and carrier den-
sity, which determine the ground state of the system. 
SITs in disordered systems can be classified into two 
groups: the first type originating from fluctuations of the 
amplitude of the order parameter and the second includ-
ing phase fluctuations. Fisher and others43,46–48 suggested 
a ‘dirty-boson’ model, taking into consideration the fact 
that the SIT is caused by quantum fluc tuations of the 
phase and long-range Coulomb repulsion. They pre-
dicted that the SIT would be characterized by a universal 

sheet resistance at the transition point, dubbed quan-
tum resistance, RQ = h/(2e)2, with h the Plank constant 
and e the elementary charge. The SIT is independent of 
materials or systems, and the temperature dependence 
of the sheet resistance Rsheet as a function of |x − xc|/T1/zν 

shows a scaling behaviour (x and xc are the tuning 
parameter and its critical value, and ν and z the static 
and dynamic critical exponents, respectively). In the 
case of magnetic-field-induced SITs, this model can be 
understood from the point of view of the self-duality of 
Cooper pairs and vortices: the superconducting phase is 
described by a condensate of Cooper pairs with localized 
vortices (vortex glass), whereas the insulating phase is a 
condensate of vortices with localized Cooper pairs (Bose 
glass). Some metallic films such as amorphous Bi (FIG. 2b) 
show a critical Rsheet which is almost equal to RQ for a 
disorder-induced SIT10. The scaling collapse of Rsheet(T) 
was also observed49 in the magnetic-field-induced SIT 
in films such as amorphous MoGe (FIG. 2c). However, 
some systems show different behaviour12; for example, 
an intervening quantum metallic state (possible metallic 
ground state) with a sheet resistance smaller than RQ can 
appear between the superconducting and the insulating 
state9,13,49–51. Although many explanations were pro-
posed for this intervening metallic state, as discussed 
in later sections, consensus has not yet been achieved. 
Comprehensive reviews about the SIT in conventional 
disordered 2D superconductors have been published by 
Goldman and colleagues44,52,53.

Another issue is the effect of the spin–orbit inter-
action (SOI) on the superconducting state in a parallel  
(in-plane) magnetic field. In conventional 2D films in 
the dirty limit, the large parallel upper critical field, 
which exceeds the usual Pauli limit, has been ascribed 

Figure 1 | Evolution of the thickness of 2D superconductors since 1980. In the past century, most 2D superconductors 
were fabricated by deposition of metallic thin films, which led to strongly disordered, amorphous or granular samples 
(grey)6–13. More recently, atomic layers grown by molecular beam epitaxy (MBE; orange)16–20, interfacial superconductors 
(green)21–23, exfoliated atomic layers (purple)24–27 and electric double-layer transistors (EDLT; blue)28–31,131 have been 
fabricated. These systems are highly crystalline, in marked contrast with older samples. The deposited films are of three 
kinds: InOx, MoGe and Ta are sputtered thin films; Sn, Ga, Al, In, Pb and Bi are MBE-grown thin films; and YBa2Cu3Oy 
(YBCO) was deposited by reactive evaporation. Bi2212, Bi2Sr2CaCu2O8 + x; LAO, LaAlO3; LCO, La2CuO4; LSCO, 
La2 − xSrxCuO4; STO, SrTiO3. 
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Ginzburg-Landau theory of superconductivity

Cooper pair

Free energy functional 

At low temperatures a Mexican hat potential when r(T) < 0 and u > 0

Superfluid density 

Goldstone mode from phase variation 

⇢s ⌘ | |2 = |r(T )|/u
<latexit sha1_base64="wXlqfBfugAVfOXtaYiJl1iw05Kg=">AAACC3icbVDLSsNAFJ34rPUVdelmaBHqpiZR0I1QcOOyQl/QxDCZTtqhk4fzKJSkezf+ihsXirj1B9z5NyZtF9p64MLhnHu59x4vZlRIw/jWVlbX1jc2C1vF7Z3dvX394LAlIsUxaeKIRbzjIUEYDUlTUslIJ+YEBR4jbW94k/vtEeGCRmFDjmPiBKgfUp9iJDPJ1Us2H0SugDZ5UHQEU7suaHpvwWuY8krjND1TRVcvG1VjCrhMzDkpgznqrv5l9yKsAhJKzJAQXdOIpZMgLilmZFK0lSAxwkPUJ92Mhiggwkmmv0zgSab0oB/xrEIJp+rviQQFQowDL+sMkByIRS8X//O6SvpXTkLDWEkS4tkiXzEoI5gHA3uUEyzZOCMIc5rdCvEAcYRlFl8egrn48jJpWVXzvGrdXZRr1jyOAjgGJVABJrgENXAL6qAJMHgEz+AVvGlP2ov2rn3MWle0+cwR+APt8wez25l6</latexit>

F =
1

2
⇢s

Z
d2x (r'(x))2

<latexit sha1_base64="TQsu35+ZCXCuTrhfTmA+HpXJ344="></latexit>

F =

Z
d2x


1

2
|r (x)|2 + 1

2
r(T )| (x)|2 + 1

4
u| (x)|4

�

<latexit sha1_base64="SBRtFJX2sd3HSnkEGsjsNcCcpRE="></latexit>

 (x) = hcx"cx#i = | (x)|ei'(x)
<latexit sha1_base64="7hLGkjem72Cka6f6t7TAcuYFO4k="></latexit>
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Mermin-Wagner theorem

Fluctuations of order parameter

Determined by Goldstone modes

Diverges at finite temperature                                             

No long-range order in two dimensions for T>0

h� (x)� (y)i
<latexit sha1_base64="EcGhbQ7OwOUpcLpcRDREOTGmArI=">AAACFnicbVBNS8NAEN3Ur1q/oh69LBahHixJFfRY8OKxgm2FJpTNZtou3WzC7kYMpb/Ci3/FiwdFvIo3/43btAfb+mDhzXszzM4LEs6Udpwfq7Cyura+UdwsbW3v7O7Z+wctFaeSQpPGPJb3AVHAmYCmZprDfSKBRAGHdjC8nvjtB5CKxeJOZwn4EekL1mOUaCN17TOPE9HngL0QuCbYayhWeTydKzNTyryra5edqpMDLxN3RspohkbX/vbCmKYRCE05UarjOon2R0RqRjmMS16qICF0SPrQMVSQCJQ/ys8a4xOjhLgXS/OExrn6d2JEIqWyKDCdEdEDtehNxP+8Tqp7V/6IiSTVIOh0US/lWMd4khEOmQSqeWYIoZKZv2I6IJJQbZIsmRDcxZOXSatWdc+rtduLcr02i6OIjtAxqiAXXaI6ukEN1EQUPaEX9IberWfr1fqwPqetBWs2c4jmYH39AjCMnhQ=</latexit>

G(k, i!n) =
1

!2
n + k2

<latexit sha1_base64="0iHIoZdHuNq81vDDhkY1OhWTIbQ=">AAACFnicbVDLSgMxFM3UV62vqks3wSJU1DIzCroRCi50WcE+oJ2WTJppQ5PMkGSEMvQr3Pgrblwo4lbc+Tem7QjaeuDC4Zx7ufceP2JUadv+sjILi0vLK9nV3Nr6xuZWfnunpsJYYlLFIQtlw0eKMCpIVVPNSCOSBHGfkbo/uBr79XsiFQ3FnR5GxOOoJ2hAMdJG6uRProuDY0hhK+SkhzriEF7CViARTpxR8iO2XXgEB2131MkX7JI9AZwnTkoKIEWlk/9sdUMccyI0ZkippmNH2kuQ1BQzMsq1YkUihAeoR5qGCsSJ8pLJWyN4YJQuDEJpSmg4UX9PJIgrNeS+6eRI99WsNxb/85qxDi68hIoo1kTg6aIgZlCHcJwR7FJJsGZDQxCW1NwKcR+ZULRJMmdCcGZfnic1t+Scltzbs0LZTePIgj2wD4rAAeegDG5ABVQBBg/gCbyAV+vRerberPdpa8ZKZ3bBH1gf3620nSk=</latexit>

(� )2 ⇠ T
X

n

Z
ddk G(k, i!n) ⇠ T

Z
dk kd�3

<latexit sha1_base64="R4epx4svPrU+KPMx0mznpcGCJsg=">AAACP3icbVBNSwMxEM36bf2qevQSLEIFLbtVUPAieNBjBVuFbrtks9MaNskuSVYoS/+ZF/+CN69ePCji1ZvpWsSvgZDHe2+YmRemnGnjug/OxOTU9Mzs3HxpYXFpeaW8utbSSaYoNGnCE3UVEg2cSWgaZjhcpQqICDlchvHJSL+8AaVZIi/MIIWOIH3JeowSY6mg3Kr6EXBDsN/QbLtbx75mAl/YLxOBxD6TBkfdKMb+ET6txjuYYT8R0CeB3P7yFqbCEnfzaHdvWArKFbfmFoX/Am8MKmhcjaB870cJzQRIQznRuu25qenkRBlGOQxLfqYhJTQmfWhbKIkA3cmL+4d4yzIR7iXKPrtKwX7vyInQeiBC6xTEXOvf2oj8T2tnpnfYyZlMMwOSfg7qZRybBI/CxBFTQA0fWECoYnZXTK+JItTYyEcheL9P/gta9Zq3V6uf71eO6+M45tAG2kRV5KEDdIzOUAM1EUW36BE9oxfnznlyXp23T+uEM+5ZRz/Kef8AS3Wrbw==</latexit>



5

XY model and algebraic long-range order

XY model: phase of the order parameter is a in-plane vector

At low temperature there is algebraic long-range order

with 

G(r) = he�i'(r)ei'(0)i ⇠ r�⌘(T )
<latexit sha1_base64="j6NXDVP/6lPKS1lm1iFXGbQrIQQ="></latexit>

⌘(T ) =
kBT

2⇡⇢s
<latexit sha1_base64="wITZp3z048fhM95assC3N3oPUuA=">AAACDHicbVDLSgMxFM34rPVVdekmWIS6KTNV0I1QdOOyQl/QGYZMmmlDM8mQZIQyzAe48VfcuFDErR/gzr8x085CWw8EDuecy809Qcyo0rb9ba2srq1vbJa2yts7u3v7lYPDrhKJxKSDBROyHyBFGOWko6lmpB9LgqKAkV4wuc393gORigre1tOYeBEacRpSjLSR/ErVJRrV2mfwGrqhRDid+DftLG24MYWuHAtfZWWTsuv2DHCZOAWpggItv/LlDgVOIsI1ZkipgWPH2kuR1BQzkpXdRJEY4QkakYGhHEVEeensmAyeGmUIQyHN4xrO1N8TKYqUmkaBSUZIj9Wil4v/eYNEh1deSnmcaMLxfFGYMKgFzJuBQyoJ1mxqCMKSmr9CPEamE236y0twFk9eJt1G3TmvN+4vqs1GUUcJHIMTUAMOuARNcAdaoAMweATP4BW8WU/Wi/VufcyjK1YxcwT+wPr8AZU3mgU=</latexit>

But you can also have
vortices

and 
vortex-antivortex pairs

Ref: Goldman 2013



6

BKT transition

A vortex satisfies 

The energy of a single vortex is 

And the entropy of a vortex is 

|r'| = 1/r
<latexit sha1_base64="C7lfjEg/fMyG06u2dX3h+YmOB60=">AAAB/3icbVBNS8NAEN34WetXVPDiZbEInmpSBb0IBS8eK9gPaEKZbDft0s0m7G4KJe3Bv+LFgyJe/Rve/Ddu2xy09cHA470ZZuYFCWdKO863tbK6tr6xWdgqbu/s7u3bB4cNFaeS0DqJeSxbASjKmaB1zTSnrURSiAJOm8Hgbuo3h1QqFotHPUqoH0FPsJAR0Ebq2MdjT0DAAXtDkEmfjfEtdi9kxy45ZWcGvEzcnJRQjlrH/vK6MUkjKjThoFTbdRLtZyA1I5xOil6qaAJkAD3aNlRARJWfze6f4DOjdHEYS1NC45n6eyKDSKlRFJjOCHRfLXpT8T+vnerwxs+YSFJNBZkvClOOdYynYeAuk5RoPjIEiGTmVkz6IIFoE1nRhOAuvrxMGpWye1muPFyVqpU8jgI6QafoHLnoGlXRPaqhOiJojJ7RK3qznqwX6936mLeuWPnMEfoD6/MHnxKVIg==</latexit>

E =
1

2
⇢s

Z
d2x (r'(x))2 = ⇡⇢s

Z L

a

dr

r
= ⇡⇢s log

L

a
<latexit sha1_base64="tTkkZYPnilO94Yygvhs/iOhvZao=">AAACZHicbVFdS+QwFE3rrh9dV+uKT8ISdlgYX4a2CgqyICyCDz64sKPCdKbcpulMME1KkopD6J/0bR/3ZX+HmbEPfuyFwOGce25yT/KaM22i6I/nr3z4uLq2vhF82vy8tR3ufLnWslGEDonkUt3moClngg4NM5ze1opClXN6k9/9XOg391RpJsVvM6/puIKpYCUjYByVhfYc/8BpqYDYuLVJi1M1k5nGKRMGF5PkAaenuJ8KyDng9B5UPWP9h4ODSRIsjDV7achgctkNK1RrVRu8buFy2smXrYU2C3vRIFoWfg/iDvRQV1dZ+JgWkjQVFYZw0HoUR7UZW1CGEU7bIG00rYHcwZSOHBRQUT22y5Ba/N0xBS6lcsfttmRfOixUWs+r3HVWYGb6rbYg/6eNGlOejC0TdWOoIM8XlQ3HRuJF4rhgihLD5w4AUcy9FZMZuBSM+5fAhRC/Xfk9uE4G8eEg+XXUO0u6ONbRPvqG+ihGx+gMXaArNEQE/fXWvNDb8f75m/6uv/fc6nudZxe9Kv/rE4GKtMY=</latexit>

S = log
L2

a2
<latexit sha1_base64="DvgyM5ypOhepYJZgxp8wCDLn23g=">AAACAXicbVDLSsNAFL3xWesr6kZwM1gEVyWpgm6EghsXLiraBzSxTKaTdugkE2YmQgl146+4caGIW//CnX/jtM1CWw/cy+Gce5m5J0g4U9pxvq2FxaXlldXCWnF9Y3Nr297ZbSiRSkLrRHAhWwFWlLOY1jXTnLYSSXEUcNoMBpdjv/lApWIivtPDhPoR7sUsZARrI3Xs/Vt0gTwuesgLJSbZ9X1llGHTOnbJKTsToHni5qQEOWod+8vrCpJGNNaEY6XarpNoP8NSM8LpqOiliiaYDHCPtg2NcUSVn00uGKEjo3RRKKSpWKOJ+nsjw5FSwygwkxHWfTXrjcX/vHaqw3M/Y3GSahqT6UNhypEWaBwH6jJJieZDQzCRzPwVkT42SWgTWtGE4M6ePE8albJ7Uq7cnJaqlTyOAhzAIRyDC2dQhSuoQR0IPMIzvMKb9WS9WO/Wx3R0wcp39uAPrM8f1tyV0g==</latexit>

The free energy of a vortex is thus

Therefore you can have free vortices proliferate at

F = E � ST = (⇡⇢s � 2kBT ) log
L

a
<latexit sha1_base64="OsHEtnGT9yUffHVrvRhgJxOkXRw="></latexit>

TBKT =
⇡

2
⇢s

<latexit sha1_base64="xW9nS1ImjdaMIIyn9o5dfsWKlso=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiRV0I1QdCO4qdCH0IQwmU7aoZOZMDMRSsjOjb/ixoUibv0Fd/6N0zYLbT1w4XDOvdx7T5gwqrTjfFulpeWV1bXyemVjc2t7x97d6yiRSkzaWDAh70OkCKOctDXVjNwnkqA4ZKQbjq4nfveBSEUFb+lxQvwYDTiNKEbaSIF92Aqyq9tWDi+hF0mEMy+heVbPoSeHIlCBXXVqzhRwkbgFqYICzcD+8voCpzHhGjOkVM91Eu1nSGqKGckrXqpIgvAIDUjPUI5iovxs+kcOj43Sh5GQpriGU/X3RIZipcZxaDpjpIdq3puI/3m9VEcXfkZ5kmrC8WxRlDKoBZyEAvtUEqzZ2BCEJTW3QjxEJg5toquYENz5lxdJp15zT2v1u7Nqo17EUQYH4AicABecgwa4AU3QBhg8gmfwCt6sJ+vFerc+Zq0lq5jZB39gff4AAriYug==</latexit>
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Superconductivity and resistivity

Supercurrent is given by phase gradient

A supercurrent causes a sideways force on a vortex

Moving free vortices cause resistivity

Halperin-Nelson formula : resistivity above TBKT is proportional to density of vortices

J =
2e

~ ⇢sr'
<latexit sha1_base64="TRI1KU+nhYn1PealaEvT5jKtJmY=">AAACE3icbVDLSsNAFJ3UV62vqks3g0UQFyWpgm6EghtxVcE+oAnhZjpphk4mYWZSKKH/4MZfceNCEbdu3Pk3Th8LbT1w4XDOvdx7T5ByprRtf1uFldW19Y3iZmlre2d3r7x/0FJJJgltkoQnshOAopwJ2tRMc9pJJYU44LQdDG4mfntIpWKJeNCjlHox9AULGQFtJL98doevsRtKIHmNjnM3CkCOsSujxFfYFRBwwO4QZBoxv1yxq/YUeJk4c1JBczT88pfbS0gWU6EJB6W6jp1qLwepGeF0XHIzRVMgA+jTrqECYqq8fPrTGJ8YpYfDRJoSGk/V3xM5xEqN4sB0xqAjtehNxP+8bqbDKy9nIs00FWS2KMw41gmeBIR7TFKi+cgQIJKZWzGJwASkTYwlE4Kz+PIyadWqznm1dn9RqdfmcRTRETpGp8hBl6iOblEDNRFBj+gZvaI368l6sd6tj1lrwZrPHKI/sD5/AAT2nZk=</latexit>
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FIG. 3. Plot for T )T~ of the logarithm of the resis-
tance as a function of (T —T,) ~ where T = 1.903 K.
These data represent the flux-flow resistance (linear
V-I characteristics) of thermally excited vortices, a
process indicated schematically in the inset. The theory
fits are discussed in the text.

temperature where a(T) is exactly 3. An extrapo-
lation of a(T) to unity in Fig. 2 gives the addition-
al. result T p 2 206 Ky in reasonable agreement
with the value T,p 2o3 K determined from a fit
of the Aslamosov-Larkin theory of paraconduc-
tivity' to the resistive transition in the region
T+ T p This fit, carried out over a temperature
range of 1.8 K, ignores the temperature depen-
dence of R„and gives a normal-state sheet re-
sistance of 3735 0/o.
For T )T, the presence of thermally excited

free vortices, indicated schematically in the inset
in Fig. 3, gives rise to linear V-I characteris-
tics with a resistance R which has the theoretical
dependence near T, of the form'

R = 10.8bR„exp(- 2[b(T,O —T,)/(T- T,)]ii j2. (2)

The nonuniversal constant b is the same parame-
ter which appears in the square-root cusp of the
exponent in Eq. (1). The data in Fig. 3 used to
test this functional. dependence were taken at low
enough currents to assure that nonlinear pair
breaking was not occurring. Use of the previous-
ly determined values for T, and T p the slope

and intercept of the regression fit to the data,
which extends over four decades in resistance,
yields the parameters b and R„. The goodness
of fit in the data of Fig. 3 is insensitive to the
+ 3-mK uncertainty in T, although the uncertain-
ties in b 6 ~ 28 y p5 and R„=20850,,",~pp are
large. This value for R„ is in agreement with
the resistance of 17800 0 (3560 0/ ) measured
at 8 K in the paraconductivity regime which may
be somewhat fortuitous because of the theoretical
approximations affecting the pref actors in Eqs.
(1) and (2).'
Additional. parameters can now be extracted

from the data. With use of R„and the Ginzburg-
Landau temperature dependence for $„anon-
linear optimal fit of curves d-rn of Fig. 1 by the
theoretical form of Eq. (1) gives the values I,(T,)
=0.77 mA and $, (T, )=52A ~ This rather short
coherence length is typical for amorphous ma-
terial. s. If we know $„b, T„and T,» it is a
straightforward matter to calculate the pair cor-
relation length $' which represents the average
distance between thermal. ly excited vortices.
Interestingly, at the lowest temperature (1.928 K)
for which linear V Idata c-ould be obtained, $'
is calculated to be 6.7 p.m, a factor of 1000 lar-
ger than $, but still appreciably smaller than the
100-JL(,m width of the fil.m.
To ascertain the effects of large-seal. e fil.m in-

homogeneity, ' a linear gradient in T, along the
length and width of the fil.m was modeled into
Eqs. (1) and (2). For a gradient of (T,„-T,)/
(0.05 cm)=0. 72 K/cm, a less than 2% effect on
the measured slopes of Eq. (1) was found. The
effect on Eq. (2), however, for this same gradient
along the film length is appreciable as shown by
the dotted line in Fig. 3. Clearly, such a large
gradient in T, is not present, and the difference
between T, and T,„ is not explained by inhomogen-
eity of this type.
Once we have obtained b, the square-root cusp

component of the theoretical. behavior for a(T)
near T, is revealed by the dotted curve in Fig. 2.
There are no adjustabl. e parameters since the
previously stated values for b, T„and T„were
used. The good qualitative agreement between
the "size" of the cusp and the data reflects the
importance of renormal. ization effects near T,.
The discrepancy between theory and the data at
lower temperatures arises because the square-
root dependence is valid only near T, and al.so
does not include the mean-field temperature de-
pendence of the superfluid density. The inft. uence
of the finite measurement length near T, can be

1605

~F = nW
h

2e
~J ⇥ ẑ

<latexit sha1_base64="M2v8kxmjtC/caxEKzi/POSx6xI8=">AAACGnicbVBNSwMxEM36bf2qevQSLIKnslsFvQiCIOKpgrWFbinZdLYNzWaXZLZQl/0dXvwrXjwo4k28+G9MPw5qfRDyeG+GmXlBIoVB1/1y5uYXFpeWV1YLa+sbm1vF7Z07E6eaQ43HMtaNgBmQQkENBUpoJBpYFEioB/2LkV8fgDYiVrc4TKAVsa4SoeAMrdQuev4AeHaZ0zOq2nXqh5rxrJdnFcjp2Lq2P4oIDPV7DLP7vF0suWV3DDpLvCkpkSmq7eKH34l5GoFCLpkxTc9NsJUxjYJLyAt+aiBhvM+60LRUMTuslY1Py+mBVTo0jLV9CulY/dmRsciYYRTYyohhz/z1RuJ/XjPF8LSVCZWkCIpPBoWppBjTUU60IzRwlENLGNfC7kp5j9l00KZZsCF4f0+eJXeVsndUrtwcl84r0zhWyB7ZJ4fEIyfknFyRKqkRTh7IE3khr86j8+y8Oe+T0jln2rNLfsH5/Ab3waDO</latexit>

⇢ =

✓
h

2e

◆2

nvµv
<latexit sha1_base64="rBXGpJvQebScOjlMgUzTd6hf18w=">AAACF3icbVBNS8NAEN34bf2qevSyWAS9lCQKehEKXjwq2Co0NWy2k2Zxswm7k0IJ/Rde/CtePCjiVW/+G7cfB78eDDzem2FmXpRLYdB1P52Z2bn5hcWl5crK6tr6RnVzq2WyQnNo8kxm+iZiBqRQ0ESBEm5yDSyNJFxHd2cj/7oP2ohMXeEgh07KekrEgjO0UlitBzrJ6CkNJMS4T4NYM14mw9KHIQ206CV4cOtTFfZpkBZhP6zW3Lo7Bv1LvCmpkSkuwupH0M14kYJCLpkxbc/NsVMyjYJLGFaCwkDO+B3rQdtSxVIwnXL815DuWaVL40zbUkjH6veJkqXGDNLIdqYME/PbG4n/ee0C45NOKVReICg+WRQXkmJGRyHRrtDAUQ4sYVwLeyvlCbPRoI2yYkPwfr/8l7T8undY9y+Pag1/GscS2SG7ZJ945Jg0yDm5IE3CyT15JM/kxXlwnpxX523SOuNMZ7bJDzjvXzllnqw=</latexit>

R = R0 exp
⇣
�b|T � TBKT |�1/2

⌘

<latexit sha1_base64="QFoSqZcDCc1OV2Quic6KG+VV+KY="></latexit>

Zero resistance measurements

Experiments were performed on the current decaying in a superconducting loop 
(U � 10-26 ΩÂm).

U(ΩÂm)

Insulators 1020-1010

Semiconductors 105-10-3

Metals 10-5-10-10

Superconductors a 0

True only in the superconducting state
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I/V curve below TBKT

In equilibrium, the vortex density is given by rate  

In 2d, below TBKT, vortex pairs are bound with energy 

An applied current tries to pull them apart 

There is a maximum energy at d0 above which vortex-pairs can break!
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Fig. 1 are a direct consequence of the current-
induced unbinding of vortex pairs, a process in-
dicated schematically in the upper left portion of
the figure. Theory predicts a V-I dependence
for T& T, of the form'

V= 2R„ I [a(T) —3](I/I, )'~~,
where a(T) =1+0.5/q(T) is a power-law exponent,
I,=wek~T, jhj, is a critical current, andw is the
film width. If we assume a mean-field tempera-
ture dependence of the superfluid density, the
exponent a(T) has an approximate dependence
1+2(T„—T)/(T„—T, ), except near T„where
theory predicts a square-root cusp dependence
of the form a(T) = 3+m[(T, —T)jb (T,o —T,)]' 2.'~
The constant b wilI. be determined below from ex-
periment and is nonuniversal. Most importantl. y,
one can deduce values for q(T) from measure-
ments of a(T). One would therefore expect to ob-
serve a rapid crossover in behavior at T =T,
where vortices with the largest separations un-
bind and q(T, ) = —,, implying a(T, ) = 3.
The data in Fig. 1 il.lustrate, in essence, just

such a behavior. The transition temperature T,
is defined as the highest temperature at which no
deviation from power-law behavior at low cur-
rents is observed. This criterion is satisfied by
curve d, measured at T =T, =1.903 K, which has
a slope a(T, ) = 3.281(3) calculated from data ex-
tending over six decades in voltage. For the
lower-temperature data, the straight-line por-
tions below 10 ' V were used to obtain a(T). The
plot in Fig. 2 of a(T) vs T reveals linea. r behavior
with an extrapol. ated value of 3 occurring at T„
= 1~ 939 K. At this temperature (curve a of Fig. 1)
the voltage at small currents is linear in current,
which is the expected response for thermally ex-
cited free vortices, and so T„is clearly above
T,. It is important to note that the power-l. aw
dependences of the data in Fig. 1 extend over a
l.arge enough range and show a sharp discontinu-
ity in slope as a function of T (compare c, which
is at a temperature just 6 mK higher than d) in
agreement with theoretical expectations of a
sharp phase transition. This pronounced cross-
over in behavior establishes T, to within approx-
imatel. y + 3 mK and enabl. es us to make aninde-
pendent measurement of a(T,), in contrast to pre-
vious experiments' "where T, is defined as that
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FIG. 1. Plot on logarithmic axes of the V-I charac-
teristics taken at thirteen successively lower tempera-
tures rangirg from 1.939 K (curve a) to 1.460 K {curve
m). The curves are low-frequency (24.2 Hz) digitized
data representing approximately 200 points per voltage
decade. The nonlinear pair-breaking process is illus-
trated schematically in the inset. T, and T, are dis-
cussed in the text.
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FIG. 2. Plot of power-law slopes extracted from
curves d-m of Fig. 1 as a function of temperature.
The temperatures T,„,T, and T 0 together with the
theoretical fits are discussed in the text.
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Experimental observation: InOx
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FIG. 3. Plot for T )T~ of the logarithm of the resis-
tance as a function of (T —T,) ~ where T = 1.903 K.
These data represent the flux-flow resistance (linear
V-I characteristics) of thermally excited vortices, a
process indicated schematically in the inset. The theory
fits are discussed in the text.

temperature where a(T) is exactly 3. An extrapo-
lation of a(T) to unity in Fig. 2 gives the addition-
al. result T p 2 206 Ky in reasonable agreement
with the value T,p 2o3 K determined from a fit
of the Aslamosov-Larkin theory of paraconduc-
tivity' to the resistive transition in the region
T+ T p This fit, carried out over a temperature
range of 1.8 K, ignores the temperature depen-
dence of R„and gives a normal-state sheet re-
sistance of 3735 0/o.
For T )T, the presence of thermally excited

free vortices, indicated schematically in the inset
in Fig. 3, gives rise to linear V-I characteris-
tics with a resistance R which has the theoretical
dependence near T, of the form'

R = 10.8bR„exp(- 2[b(T,O —T,)/(T- T,)]ii j2. (2)

The nonuniversal constant b is the same parame-
ter which appears in the square-root cusp of the
exponent in Eq. (1). The data in Fig. 3 used to
test this functional. dependence were taken at low
enough currents to assure that nonlinear pair
breaking was not occurring. Use of the previous-
ly determined values for T, and T p the slope

and intercept of the regression fit to the data,
which extends over four decades in resistance,
yields the parameters b and R„. The goodness
of fit in the data of Fig. 3 is insensitive to the
+ 3-mK uncertainty in T, although the uncertain-
ties in b 6 ~ 28 y p5 and R„=20850,,",~pp are
large. This value for R„ is in agreement with
the resistance of 17800 0 (3560 0/ ) measured
at 8 K in the paraconductivity regime which may
be somewhat fortuitous because of the theoretical
approximations affecting the pref actors in Eqs.
(1) and (2).'
Additional. parameters can now be extracted

from the data. With use of R„and the Ginzburg-
Landau temperature dependence for $„anon-
linear optimal fit of curves d-rn of Fig. 1 by the
theoretical form of Eq. (1) gives the values I,(T,)
=0.77 mA and $, (T, )=52A ~ This rather short
coherence length is typical for amorphous ma-
terial. s. If we know $„b, T„and T,» it is a
straightforward matter to calculate the pair cor-
relation length $' which represents the average
distance between thermal. ly excited vortices.
Interestingly, at the lowest temperature (1.928 K)
for which linear V Idata c-ould be obtained, $'
is calculated to be 6.7 p.m, a factor of 1000 lar-
ger than $, but still appreciably smaller than the
100-JL(,m width of the fil.m.
To ascertain the effects of large-seal. e fil.m in-

homogeneity, ' a linear gradient in T, along the
length and width of the fil.m was modeled into
Eqs. (1) and (2). For a gradient of (T,„-T,)/
(0.05 cm)=0. 72 K/cm, a less than 2% effect on
the measured slopes of Eq. (1) was found. The
effect on Eq. (2), however, for this same gradient
along the film length is appreciable as shown by
the dotted line in Fig. 3. Clearly, such a large
gradient in T, is not present, and the difference
between T, and T,„ is not explained by inhomogen-
eity of this type.
Once we have obtained b, the square-root cusp

component of the theoretical. behavior for a(T)
near T, is revealed by the dotted curve in Fig. 2.
There are no adjustabl. e parameters since the
previously stated values for b, T„and T„were
used. The good qualitative agreement between
the "size" of the cusp and the data reflects the
importance of renormal. ization effects near T,.
The discrepancy between theory and the data at
lower temperatures arises because the square-
root dependence is valid only near T, and al.so
does not include the mean-field temperature de-
pendence of the superfluid density. The inft. uence
of the finite measurement length near T, can be
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Fig. 1 are a direct consequence of the current-
induced unbinding of vortex pairs, a process in-
dicated schematically in the upper left portion of
the figure. Theory predicts a V-I dependence
for T& T, of the form'

V= 2R„ I [a(T) —3](I/I, )'~~,
where a(T) =1+0.5/q(T) is a power-law exponent,
I,=wek~T, jhj, is a critical current, andw is the
film width. If we assume a mean-field tempera-
ture dependence of the superfluid density, the
exponent a(T) has an approximate dependence
1+2(T„—T)/(T„—T, ), except near T„where
theory predicts a square-root cusp dependence
of the form a(T) = 3+m[(T, —T)jb (T,o —T,)]' 2.'~
The constant b wilI. be determined below from ex-
periment and is nonuniversal. Most importantl. y,
one can deduce values for q(T) from measure-
ments of a(T). One would therefore expect to ob-
serve a rapid crossover in behavior at T =T,
where vortices with the largest separations un-
bind and q(T, ) = —,, implying a(T, ) = 3.
The data in Fig. 1 il.lustrate, in essence, just

such a behavior. The transition temperature T,
is defined as the highest temperature at which no
deviation from power-law behavior at low cur-
rents is observed. This criterion is satisfied by
curve d, measured at T =T, =1.903 K, which has
a slope a(T, ) = 3.281(3) calculated from data ex-
tending over six decades in voltage. For the
lower-temperature data, the straight-line por-
tions below 10 ' V were used to obtain a(T). The
plot in Fig. 2 of a(T) vs T reveals linea. r behavior
with an extrapol. ated value of 3 occurring at T„
= 1~ 939 K. At this temperature (curve a of Fig. 1)
the voltage at small currents is linear in current,
which is the expected response for thermally ex-
cited free vortices, and so T„is clearly above
T,. It is important to note that the power-l. aw
dependences of the data in Fig. 1 extend over a
l.arge enough range and show a sharp discontinu-
ity in slope as a function of T (compare c, which
is at a temperature just 6 mK higher than d) in
agreement with theoretical expectations of a
sharp phase transition. This pronounced cross-
over in behavior establishes T, to within approx-
imatel. y + 3 mK and enabl. es us to make aninde-
pendent measurement of a(T,), in contrast to pre-
vious experiments' "where T, is defined as that
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FIG. 1. Plot on logarithmic axes of the V-I charac-
teristics taken at thirteen successively lower tempera-
tures rangirg from 1.939 K (curve a) to 1.460 K {curve
m). The curves are low-frequency (24.2 Hz) digitized
data representing approximately 200 points per voltage
decade. The nonlinear pair-breaking process is illus-
trated schematically in the inset. T, and T, are dis-
cussed in the text.
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FIG. 2. Plot of power-law slopes extracted from
curves d-m of Fig. 1 as a function of temperature.
The temperatures T,„,T, and T 0 together with the
theoretical fits are discussed in the text.
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Experimental observation: LAO/STO

samples develop a small voltage drop which is
proportional to the current and increases with
temperature. As Fig. 4A shows for the 8-uc-thick
sample, at 30 mK the associated resistance is at
least four orders of magnitude smaller than the
normal state resistance. With T increasing from
30 mK to 180 mK, the resistance grows ex-
ponentially from ≅ 0.1 W to 10 W. Between 180
mK and Tc, the step at Ic disappears and power-
law type V(I) curves are measured.

Is the bulk of the SrTiO3 superconducting
or is it only a thin sheet at the interface layer?

How thick is the superconducting layer? If the
heterostructures were 2D superconductors, the
transition into the superconducting state would
be a BKT transition, characterized by a transition
temperature TBKT at which vortex-antivortex
pairs unbind (23). A simple estimate of TBKT,
assuming that the sheet superconducting carrier
density equals 4 × 1013/cm2, would suggest that
in the samples, the BKT and mean field temper-
atures almost coincide. However, in case of large
vortex fugacity, a high density of vortex-antivortex
pairs is thermally generated and an ionic-like

vortex-antivortex crystal is formed (24). For such
a system, the melting of this lattice represents the
BKT transition, which then occurs at lower temper-
atures. At the BKT transition, the current-induced
Lorentz force causes dislocation-antidislocation
pairs to unbind, resulting in a V º I a behavior,
with a(TBKT) = 3.

The samples indeed show clear signatures of
the BKT behavior, such as a V º I a power-law
dependence (Fig. 4A). As revealed by Fig. 4B, at
T = 188 mK, the exponent a approaches 3; this
temperature is therefore identified as TBKT. The
V(I,T) characteristics (Fig. 4A) are very similar to
the results of simulations treating finite-size 2D
systems (25). The ohmic regime observed below
TBKT at small currents is expected for finite size
samples and agrees quantitatively with an analy-
sis (18) based on (24).

In addition, the R(T) characteristics are
consistent with a BKT transition, for which,
close to TBKT, aR =R0exp(−bt−1/2) dependence is
expected (26). Here, R0 and b are material
parameters and t = T/TBKT − 1. As shown by
Fig. 4C, the measured R(T) dependence is
consistent with this behavior and yields TBKT ≅
190 mK, in agreement with the result of the
a-exponent analysis. The superconducting transi-
tion of the samples is therefore consistent with
that of a 2D superconducting film. Hence, the
superconducting layer is thinner than x ≅ 70 nm.

Analysis of the superconducting transition
temperature provides an independent bound on
the layer thickness. If the superconductivity were
due to oxygen defects in SrTiO3−x, a carrier
density of ≳ 3 × 1019/cm3 would be required
for a Tc of 200 mK (27). The measured sheet
carrier densities thus give an upper limit for the
thickness of the superconducting sheet of ≅ 15
nm. Considering that the carrier concentration of
the SrTiO3−x layer cannot be constant but has to
conform to a profile following Poisson’s equation
as treated with consideration to the field-
dependent SrTiO3 susceptibility (28), one can
set an upper limit for the thickness of the
superconducting sheet of ≅ 10 nm, a value much
smaller than that suggested in (7, 8) for the
thickness of the conducting layer in reduced
LaAlO3/SrTiO3 heterostructures. The carrier
density profile at interfaces in oxygen-deficient
SrTiO3−x has also been calculated in (8). As a
result of this model, a sheet carrier density > 5 ×
1014/cm2 is needed to provide a carrier concen-
tration of 3 × 1019/cm3 . Because the sheet carrier
densities of our samples equal only 1.5 to 4 ×
1013/cm2, according to this model the supercon-
ductivity of the LaAlO3/ SrTiO3 interface cannot
be caused by doped SrTiO3−x alone.

The experiments presented here do not allow
us to determine whether the observed super-
conductivity is due to a thin doped SrTiO3 sheet
or a novel phenomenon occurring at this artificial
interface. Although the Tc of the heterostructures
falls in the transition range of oxygen-deficient
SrTiO3−x, the transport properties of the samples
differ to some extent from the ones of doped

Fig. 3. V(I) measurements of the 8-uc LaAlO3/SrTiO3 heterostructure. (A) Temperature-dependent
voltage-current characteristics of a 100 × 300 mm2 bridge. (B) Measured temperature dependence
of the linear critical current density, as obtained from (A).

Fig. 4. Low-temperature transport properties of the 8-uc LaAlO3/SrTiO3 heterostructure. (A) V(I)
curves on a logarithmic scale. The color code is the same as that in Fig. 3A. The numbers provide the
value of T, measured in mK, at which the curves were taken. The short black lines are fits of the data in
the transition. The two long black lines correspond to V = RI and V ~ I3 dependencies and show that
187 mK < TBKT < 190 mK. (B) Temperature dependence of the power-law exponent a, as deduced
from the fits shown in (A). (C) R(T) dependence of the 8-uc sample (I= 100 nA), plotted on a [dln(R)/dT]−2/3

scale. The solid line is the behavior expected for a BKT transition with TBKT = 190 mK.
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by transport measurement. The main reason for this
difficulty is that the STO surface after Se beam etch-
ing at 950�C becomes very conductive with resistivity
in the order of 10�4 ⌦·cm. To carry out transport
measurement, we must use the insulating STO(001)
substrates that were only treated by O2 in a tube fur-
nace. A film of the 5 UC FeSe was covered with a
20-nm-thick amorphous Si protection layer for the ex
situ transport measurement.
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Fig. 3. (a) Zero-bias differential conductance map-
ping of the vortex state under magnetic field (11 T)
at 4.2 K. (b) Simultaneously recorded STM topography
(10.6 nm⇥10.6 nm) of the mapping area shown in (a).
VS=50 mV, It=52 pA. (c) The scanning tunneling spectra
on and near the vortex core. The locations where the spec-
tra are taken are indicated by the white points marked in
(a). Near the vortex core center (points 4, 5 and 6), the su-
perconducting coherence peaks at approximately ±20 meV
disappear and bound states at EF appear. At different lo-
cations, there is no change in the superconducting gap
size.

As shown in Fig. 4(a), the temperature depen-
dent resistance clearly reveals the occurrence of su-
perconducting transition with an onset temperature
of ⇠53 K. This value is the highest among more than
30 films grown under the same condition. Typically, a
value of ⇠40 K is obtained. The superconducting tran-
sition is suppressed by magnetic field (see the upper
inset in Fig. 4(a)), a typical characteristic of supercon-
ductors. To correlate the TC with gap �, we carried
out low-temperature STS measurement. Figure 4(b)
shows the tunneling spectrum of the 1 UC film grown
on the insulating STO under the same condition. A
gap of ⇠10 meV is clearly observed. Using the same
BCS ratio (5.5) mentioned above, we obtain TC=42 K,
which agrees with the transport experiment. Since
the 2 UC and thicker films are non-superconducting
(see Fig. 4(c)), the transport measurement shown in
Fig. 4(a) should only reflect the superconductivity of

the first UC FeSe. In order to determine the TC asso-
ciated with �=20.1 meV directly by transport, prepa-
ration of atomically flat insulating STO, which may be
carried out with in situ MBE or pulse laser deposition
without surface treatment, or using other insulating
substrates is necessary. We leave this for future ex-
periments.

Fig. 4. (a) Temperature dependence of square resistivity
(Rsq) of a 5-UC-thick FeSe film on insulating STO(001)
surface from 0 to 300 K. Upper inset: Rsq–T curves at
various magnetic fields along the c-axis. Lower inset: the
Rsq–T curve from 0 to 80 K. (b) Typical dI/dV spectrum
of the 1-UC-thick FeSe film on insulating STO(001) sur-
face at 0.4 K (VS=25 mV, It=99 pA). The gap as measured
by two coherence peaks is ⇠10 meV. (c) The dI/dV spec-
trum of the 2-UC-thick FeSe film on insulating STO(001)
surface at 4.2 K (VS=25 mV, It=47 pA).

While the mechanism for this high TC supercon-
ductivity is not completely clear for the time being, we
argue that the interface plays a major role. Accord-
ing to our recent study on ultrathin FeSe films (from
1 UC to 8 UC) grown on graphene/SiC (its dielectric
constant " < 1), the upper limit of TC for unstrained
1 UC FeSe is 2 K.[8] For bulk FeSe, by applying ex-
ternal pressure TC can increase by four times (from
9.4 K to 36.7 K) due to lattice compression.[10] As-
suming a similar enhancement effect by the epitaxial
strain here and taking a simplest estimation, TC=8–
10 K for 1 UC FeSe on STO would be expected. How-
ever, this effect is too weak to account for the observed
value. One should consider another interface effect,
the interface enhanced electron-phonon coupling[3,11]
at the FeSe/TiO interface, as demonstrated in mono-
layer Pb and In films on Si(111) with a very similar
structure.[12,13] In the present case, the effect may be
further promoted by the polaronic effect associated
with the high dielectric constant of STO. Another pos-
sibility is formation of two-dimensional electron gas at

037402-3

Experimental observation: FeSe/STO??

Ref: Wang et al., CPL 2012
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corresponds to full-filling of each set of degenerate superlattice bands, 
where θ≈ /A a3 (2 )2 2  is the area of the moiré unit cell, a = 0.246 nm 
is the lattice constant of the underlying graphene lattice and θ is the 
twist angle. In Supplementary Video, we present an animation of the 
way in which the band structure in the mini Brillouin zone of TBG 
evolves as the twist angle varies from θ = 3° to θ = 0.8°, calculated using 
a continuum model for one valley12.

Special angles, namely the ‘magic angles’, exist, at which the Fermi 
velocity drops to zero; the first magic angle is predicted12 to be 
θmagic

(1)  ≈ 1.1°. Near this twist angle, the energy bands near charge neu-
trality, which are separated from other bands by single-particle gaps, 
become remarkably flat. The typical energy scale for the entire band-
width is about 5–10 meV (Fig. 1c)12,18. Experimentally confirmed con-
sequences of the flatness of these bands are high effective mass in the 
flat bands (as observed in quantum oscillations) and correlated insu-
lating states at half-filling of these bands, corresponding to n = ±ns/2, 
where n = CVg/e is the carrier density defined by the gate voltage Vg (C 
is the gate capacitance per unit area and e is the electron charge)18. 
These insulating states are a result of the competition between Coulomb 

energy and quantum kinetic energy, which gives rise to a correlated 
insulator at half-filling that has characteristics consistent with Mott-like 
insulator behaviour18. The doping density that is required to reach the 
Mott-like insulating states is ns/2 ≈ (1.2–1.6) × 1012 cm−2, depending 
on the exact twist angle. Here we report transport data that clearly 
demonstrate that superconductivity is achieved as the material is doped 
slightly away from the Mott-like insulating state in magic-angle TBG. 
We observed superconductivity across multiple devices with slightly 
different twist angles, with the highest critical temperature that we 
achieved being 1.7 K.

Superconductivity in magic-angle TBG
In Fig. 1a we show the typical device structure of fully encapsulated 
TBG devices. The two sheets of graphene originate from the same 
exfoliated flake, which permits a relative twist angle that is controlled 
precisely to within about 0.1°–0.2° (refs 17, 20, 21). The encapsulated 
TBG stack is etched into a ‘Hall’ bar and contacted from the edges22. 
Electrical contacts are made from non-superconducting materials 
(thermally evaporated Au on a Cr sticking layer) to avoid any potential 
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Figure 1 | Two-dimensional superconductivity in a graphene 
superlattice. a, Schematic of a typical twisted bilayer graphene 
(TBG) device and the four-probe (Vxx, Vg, I and the bias voltage Vbias) 
measurement scheme. The stack consists of hexagonal boron nitride 
on the top and bottom, with two graphene bilayers (G1, G2) twisted 
relative to each other in between. The electron density is tuned by a 
metal gate beneath the bottom hexagonal boron nitride layer. b, Four-
probe resistance Rxx = Vxx/I (Vxx and I are defined in a) measured in two 
devices M1 and M2, which have twist angles of θ = 1.16° and θ = 1.05°, 
respectively. The inset shows an optical image of device M1, including the 
main ‘Hall’ bar (dark brown), electrical contact (gold), back gate (light 
green) and SiO2/Si substrate (dark grey). c, The band energy E of TBG  
at θ = 1.05° in the first mini Brillouin zone of the superlattice. The  
bands near charge neutrality (E = 0) have energies of less than 15 meV.  

d, The DOS corresponding to the bands shown in c, for energies of  
−10 to +10 meV (blue; θ = 1.05°). For comparison, the purple lines show 
the total DOS of two sheets of freestanding graphene without interlayer 
interaction (multiplied by 103). The red dashed line shows the Fermi 
energy EF at half-filling of the lower branch (E < 0) of the flat bands, 
which corresponds to a density of n = −ns/2, where ns is the superlattice 
density (defined in the main text). The superconductivity is observed 
near this half-filled state. e, Current–voltage (Vxx–I) curves for device 
M2 measured at n = −1.44 × 1012 cm−2 and various temperatures. At 
the lowest temperature of 70 mK, the curves indicate a critical current 
of approximately 50 nA. The inset shows the same data on a logarithmic 
scale, which is typically used to extract the Berezinskii–Kosterlitz–
Thouless transition temperature (TBKT = 1.0 K in this case), by fitting to a 
Vxx ∝ I3 power law (blue dashed line).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Experimental observation: Twisted bilayer graphene

Ref: Cao et al., Nature 2018
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Quantum Phase Transitions in Disordered Two-Dimensional Superconductors
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It is argued that with increasing applied magnetic field, a disordered, superconducting thin film will
undergo a zero-temperature transition into an insulating state. At this superconductor-insulator transi-
tion the field-induced vortices Bose condense. A scaling theory for this field-tuned transition is de-
scribed. Right at the transition, both the longitudinal and Hall resistivities are predicted to be finite,
nonzero, and have universal values.

PACS numbers: 74.40.+k, 74.70.Mq

An applied magnetic field drastically alters the low-
temperature behavior of disordered two-dimensional
electron systems. Weak localization' is replaced by the
integer and fractional quantum Hall effects. Recent at-
tention has focused on analogous bosonic systems —dis-
ordered superconducting films—which exhibit a dis-
order-tuned (T 0) superconductor-insulator transi-
tion. What effect will an applied magnetic field have
on this latter system? In this paper we present argu-
ments that a new and fundamentally different
superconductor-insulator transition should be accessible
by simply tuning the magnetic field. Rather than an un-
binding of vortex pairs, this field-tuned transition is
driven by the delocalization and Bose condensation of
field-induced vortices. A scaling theory is developed for
the resistivity near and at the transition. Both resistivi-
ties p„„andp„~are predicted to be universal at the tran-
sition with their squares summing to approximately
(h/4e ) . Experimental results on this new field-tuned
transition in amorphous a-InO„ films are reported in a
companion paper.
Consider first a disorder-free superconducting film in

zero external field. Such a film will undergo a Koster-
litz-Thouless (KT) superconducting transition at some
temperature T„which, due to enhanced fluctuations in
2D, is typically substantially below the bulk transition
temperature T„.Below T,, but above T„the Cooper-
pair order parameter y(r) obtains an appreciable magni-
tude, but phase fluctuations due to vortex motion prevent
(quasi-) long-range order from being established. At T„
vortices and antivortices bind into pairs, and power-law
order is established, (y*(r)y(0)) -r
As the disorder 6 is increased, both T, and T„will

typically be suppressed. Much effort has focused on this
initial suppression for weak disorder. In contrast, we
focus on "strong" disorder, near 5, in Fig. 1, where T, is
driven all the way to zero. The point labeled 3,, in the
figure is a T=0 superconductor-insulator transition,
which can be accessed by varying the disorder strength
(or film thickness ). Provided T„doesnot also vanish at
h,

„
the long-length-scale physics near h, can be de-

scribed in terms of vortex unbinding, just as it can at the
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FIG. 1. Schematic phase diagram for disordered supercon-
ducting films. Distinct T 0 superconductor-insulator transi-
tions occur at both critical disorder & and critical magnetic
field B,.

KT transition: Vortices, paired when superconducting,
unbind in the electron-glass insulator. Since one is at
T 0, though, the vortices must be treated quantum
mechanically. As detailed below, vortices are, in fact,
themselves bosonic particles. The electron-glass phase,
in which the electron pairs are localized, can then be de-
scribed, near the transition, as a Bose-condensed fluid of
unbound vortices.
Consider now the effects of an applied magnetic field.

In a pure system the vortices will freeze into an Abriko-
sov vortex lattice below a melting line 8 . In real sys-
tems with disorder, though, (quasi-) long-range crystal-
line correlations will be destroyed. In 2D, at finite tem-
perature, vortex creep will then destroy phase coherence
and lead to a resistance. What happens as T 0? A
classical description of vortex dynamics would predict
complete pinning by disorder at T 0, and hence zero
resistance. This T 0 superconducting phase will exhibit

1990 The American Physical Society 923
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Vortex-particle duality

The vortices are “charged” particles with a logarithmic interaction 

These are bosons that can form a “superconductor”!

Two transitions with condensation of vortices:
• Disorder-driven SIT
• Magnetic-field tuned SIT

superfluid Mott insulator

Coulomb vacuum superconductor

duality phase transition

real side

dual side

coupling constant

dual coupling constant

Figure 2.4: Overview of duality relations. The vertical correspondence is the duality;
the horizontal is the phase transition. The dual side is in terms of the interactions
between vortices: individual sources interacting via the Coulomb law; or as a su-
perconducting condensate that effects a Higgs mechanism for the dual gauge fields.
When the real coupling constant is small (the superfluid), the dual coupling constant,
which is the string tension of the vortex world lines, is large and vice versa.

pair of massive propagating modes. This matches precisely the expectations
that follow from the Bose-Hubbard model; in the superfluid/Coulomb phase
a single massless propagating mode is present corresponding with the phase
mode/photon. In the dual superconductor one finds a pair of massive propa-
gating modes corresponding with the Higgsed transversal and longitudinal
photons: these correspond with the holon and doublon excitations of the
Bose-Mott insulator while the Higgs mass of the dual superconductor just
codes for the Mott gap. The fate of the second mode when going to the super-
fluid phase was discussed in Ref. [59].

This is a good point to reflect on the correspondences in the vortex dual-
ity, see figure 2.4. The superfluid is dual to the Coulomb vacuum where the
vortices take the role of the monopole charges, and the dual gauge fields are
like photons. The phase transition is from the superfluid to the Bose-Mott
insulator which has two gapped modes. On the dual side this is the supercon-
ductor with two massive dual photons. In duality parlance, it is sometimes
said that the superfluid is dual to a superconductor; strictly speaking this is
incorrect, but the since the strength of the dualities is in phase transitions,
one often compares the weak-coupling phases of the dual sides.

In the next chapter we shall explore how this generalizes to higher di-
mensions. It turns out that not the dual gauge field but rather the supercur-

2.4 Vortex duality in 2+1 dimensions 37

Ref: Fisher 1990
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Superconductor-Insulator transition

So SIT is Quantum Phase Transition with control parameter d

Diverging correlation length                    and time

September 30, 2010 15:58 World Scientific Review Volume - 9.75in x 6.5in S0217979210056451

Superconductor-Insulator Transitions 4091

Fig. 3. Resistance per square as a function of the scaling variable, t|d − dc|, for
17 different temperatures, ranging from 0.14 to 0.5 K. Different symbols represent
different temperatures. Inset: temperature dependence of t. (From Ref. 44.)

When the exponent product was determined with magnetic field rather
than thickness as the tuning parameter, νz = 0.7 ± 0.2 was found. The
fact that the field-tuned transition differs from the thickness-tuned transi-
tion suggests a universality class different from that of the thickness-tuned
transition. If z = 1, this result, with ν ∼ 0.7, would correspond to the 3D
XY model.

It is important to note several features of these two SI transitions. The
transitions are direct in that there appear to be no intermediate metallic
phases and there is no resistance saturation at the lowest temperatures. This
is in contrast with results reported for other types of systems11,66 or what
was found in granular films.40 It should also be noted that the films, which
have been studied in the case of the perpendicular field-tuned SI transition
are very close in their properties to the insulating regime. Subsequent works,
in our laboratory on a-Bi films,67 and by others on a-Pb films,68 which were
less disordered have revealed the presence of an intermediate regime that
may have two phases. The precise nature of the phase diagram is not known
at this time.

Parker et al.,68 also explored the SI transition by decorating Pb films
with magnetic impurities. They did not carry out a scaling analysis of this
data.
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Scaling form for resistivity 

At the transition: universal resistivity
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Summary: 2D superconductors

Described by XY model

No true long-range order

Resistivity governed by vortices
(BKT transition, SIT transition)

Open Questions:
• What happens to the Cooper pairs above a BKT transition?
• Role of vortices in unconventional order parameters (d-wave, topological)?
• Nature of the Quantum metallic state?
• What is the glue?
• Role of vortex pinning?


